Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Biochemistry (Mosc) ; 89(4): 701-710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831506

ABSTRACT

Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.


Subject(s)
Acrylates , Shewanella , Shewanella/enzymology , Shewanella/genetics , Shewanella/metabolism , Electron Transport , Acrylates/metabolism , Anaerobiosis , Oxidoreductases/metabolism , Oxidoreductases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
2.
Biochemistry (Mosc) ; 89(2): 241-256, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38622093

ABSTRACT

Genes of putative reductases of α,ß-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.


Subject(s)
Oxidoreductases , Vibrio , Oxidoreductases/metabolism , NAD/metabolism , Cinnamates , Oxidation-Reduction , Vibrio/genetics , Vibrio/metabolism , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , NADH Dehydrogenase/metabolism , Flavins/chemistry , Transferases , Flavin-Adenine Dinucleotide/metabolism
3.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003717

ABSTRACT

Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident.


Subject(s)
Calreticulin , Nicotiana , Calreticulin/metabolism , Nicotiana/metabolism , Endoplasmic Reticulum/metabolism , Plant Proteins/metabolism , Peptide Hydrolases/metabolism
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108298

ABSTRACT

Primary open-angle glaucoma (POAG) is a frequent blindness-causing neurodegenerative disorder characterized by optic nerve and retinal ganglion cell damage most commonly due to a chronic increase in intraocular pressure. The preservation of visual function in patients critically depends on the timeliness of detection and treatment of the disease, which is challenging due to its asymptomatic course at early stages and lack of objective diagnostic approaches. Recent studies revealed that the pathophysiology of glaucoma includes complex metabolomic and proteomic alterations in the eye liquids, including tear fluid (TF). Although TF can be collected by a non-invasive procedure and may serve as a source of the appropriate biomarkers, its multi-omics analysis is technically sophisticated and unsuitable for clinical practice. In this study, we tested a novel concept of glaucoma diagnostics based on the rapid high-performance analysis of the TF proteome by differential scanning fluorimetry (nanoDSF). An examination of the thermal denaturation of TF proteins in a cohort of 311 ophthalmic patients revealed typical profiles, with two peaks exhibiting characteristic shifts in POAG. Clustering of the profiles according to peaks maxima allowed us to identify glaucoma in 70% of cases, while the employment of artificial intelligence (machine learning) algorithms reduced the amount of false-positive diagnoses to 13.5%. The POAG-associated alterations in the core TF proteins included an increase in the concentration of serum albumin, accompanied by a decrease in lysozyme C, lipocalin-1, and lactotransferrin contents. Unexpectedly, these changes were not the only factor affecting the observed denaturation profile shifts, which considerably depended on the presence of low-molecular-weight ligands of tear proteins, such as fatty acids and iron. Overall, we recognized the TF denaturation profile as a novel biomarker of glaucoma, which integrates proteomic, lipidomic, and metallomic alterations in tears, and monitoring of which could be adapted for rapid non-invasive screening of the disease in a clinical setting.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Glaucoma, Open-Angle/drug therapy , Proteomics/methods , Artificial Intelligence , Glaucoma/diagnosis , Glaucoma/complications , Eye/metabolism , Intraocular Pressure , Biomarkers/metabolism
5.
Antioxidants (Basel) ; 12(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36978894

ABSTRACT

The homeostasis of the transmembrane potential of hydrogen ions in mitochondria is a prerequisite for the normal mitochondrial functioning. However, in different pathological conditions it is advisable to slightly reduce the membrane potential, while maintaining it at levels sufficient to produce ATP that will ensure the normal functioning of the cell. A number of chemical agents have been found to provide mild uncoupling; however, natural proteins residing in mitochondrial membrane can carry this mission, such as proteins from the UCP family, an adenine nucleotide translocator and a dicarboxylate carrier. In this study, we demonstrated that the butyl ester of rhodamine 19, C4R1, binds to the components of the mitochondrial ATP synthase complex due to electrostatic interaction and has a good uncoupling effect. The more hydrophobic derivative C12R1 binds poorly to mitochondria with less uncoupling activity. Mass spectrometry confirmed that C4R1 binds to the ß-subunit of mitochondrial ATP synthase and based on molecular docking, a C4R1 binding model was constructed suggesting the binding site on the interface between the α- and ß-subunits, close to the anionic amino acid residues of the ß-subunit. The association of the uncoupling effect with binding suggests that the ATP synthase complex can provide induced uncoupling.

6.
Viruses ; 15(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36851694

ABSTRACT

Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by ß-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the ß-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while ß-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of ß-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Vaccines, Inactivated , COVID-19/prevention & control , COVID-19 Serotherapy , COVID-19 Vaccines , Pandemics , Propiolactone/pharmacology , SARS-CoV-2 , Formaldehyde
7.
Biochemistry (Mosc) ; 88(12): 2094-2106, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38462453

ABSTRACT

Neutrophils play a dual role in protecting the body. They are able to penetrate infected tissues and destroy pathogens there by releasing aggressive bactericidal substances. While into the surrounding tissues, the aggressive products secreted by neutrophils initiate development of inflammatory processes. Invasion of neutrophils into tissues is observed during the development of pneumonia in the patients with lung diseases of various etiologies, including acute respiratory distress syndrome caused by coronavirus disease. Synthetic corticosteroid hormone dexamethasone has a therapeutic effect in treatment of lung diseases, including reducing mortality in the patients with severe COVID-19. The acute (short-term) effect of dexamethasone on neutrophil adhesion to fibrinogen and concomitant secretion was studied. Dexamethasone did not affect either attachment of neutrophils to the substrate or their morphology. Production of reactive oxygen species (ROS) and nitric oxide (NO) by neutrophils during adhesion also did not change in the presence of dexamethasone. Dexamethasone stimulated release of metalloproteinases in addition to the proteins secreted by neutrophils during adhesion under control conditions, and selectively stimulated release of free amino acid hydroxylysine, a product of lysyl hydroxylase. Metalloproteinases play a key role and closely interact with lysyl hydroxylase in the processes of modification of the extracellular matrix. Therapeutic effect of dexamethasone could be associated with its ability to reorganize extracellular matrix in the tissues by changing composition of the neutrophil secretions, which could result in the improved gas exchange in the patients with severe lung diseases.


Subject(s)
Lung Diseases , Neutrophils , Humans , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/pharmacology , Dexamethasone/pharmacology , Dexamethasone/metabolism , Metalloproteases/metabolism , Metalloproteases/pharmacology , Lung Diseases/metabolism
8.
Biomedicines ; 10(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36552040

ABSTRACT

The invasion and integrin-dependent adhesion of neutrophils to lung tissues and their secretion lead to the development of pneumonia in various pulmonary pathologies, including acute respiratory distress syndrome in coronavirus disease. We studied the effect of ivermectin, a possible therapeutic agent for inflammation and cancer, on integrin-dependent neutrophil adhesion to fibronectin and the concomitant secretion. Ivermectin did not affect the attachment of neutrophils to the substrate and the reactive oxygen species production but sharply inhibited the adhesion-induced release of hydroxylysine and stimulated the release of phenylalanine and cathepsin G. Hydroxylysine is a product of lysyl hydroxylase, which is overexpressed in tumor cells with an increased ability to invade and metastasize. The inhibition of hydroxylysine release by ivermectin, by analogy, may indicate the suppression of neutrophil invasion into tissue. The increase in the release of phenylalanine in our experiments coincided with the secretion of cathepsin G, which indicates the possible role of this enzyme in the cleavage of phenylalanine. What is the substrate in such a reaction is unknown. We demonstrated that exogenously added angiotensin II (1-8) can serve as a substrate for phenylalanine cleavage. Mass spectrometry revealed the formation of angiotensin II (1-7) in the secretion of neutrophils, which attached to fibronectin in the presence of ivermectin and exogenous angiotensin II (1-8), indicating a possible involvement of ivermectin in the inactivation of angiotensin II.

9.
J Fungi (Basel) ; 8(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35887416

ABSTRACT

The adaptations that alkaliphilic microorganisms have developed due to their extreme habitats promote the production of active natural compounds with the potential to control microorganisms, causing infections associated with healthcare. The primary purpose of this study was to isolate and identify a hydrophobin, Sa-HFB1, from an alkaliphilic fungus, Sodiomyces alkalinus. A potential antifungal effect against pathogenic and opportunistic fungi strains was determined. The MICs of Sa-HFB1 against opportunistic and clinical fungi ranged from 1 to 8 µg/mL and confirmed its higher activity against both non- and clinical isolates. The highest level of antifungal activity (MIC 1 µg/mL) was demonstrated for the clinical isolate Cryptococcus neoformans 297 m. The hydrophobin Sa-HFB1 may be partly responsible for the reported antifungal activity of S. alkalinus, and may serve as a potential source of lead compounds, meaning that it can be developed as an antifungal drug candidate.

10.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35806001

ABSTRACT

Wheat gliadins contain a large amount of glutamine- and proline-rich peptides which are not hydrolyzed by human digestive peptidases and can cause autoimmune celiac disease and other forms of gluten intolerance in predisposed people. Peptidases that efficiently cleave such immunogenic peptides can be used in enzyme therapy. The stored product insect pest Tribolium castaneum efficiently hydrolyzes gliadins. The main digestive peptidase of T. castaneum is cathepsin L, which is from the papain C1 family with post-glutamine cleavage activity. We describe the isolation and characterization of T. castaneum recombinant procathepsin L (rpTcCathL1, NP_001164001), which was expressed in Pichia pastoris cells. The activation of the proenzyme was conducted by autocatalytic processing. The effects of pH and proenzyme concentration in the reaction mixture on the processing were studied. The mature enzyme retained high activity in the pH range from 5.0 to 9.0 and displayed high pH-stability from 4.0 to 8.0 at 20 °C. The enzyme was characterized according to electrophoretic mobility under native conditions, activity and stability at various pH values, a sensitivity to various inhibitors, and substrate specificity, and its hydrolytic effect on 8-, 10-, 26-, and 33-mer immunogenic gliadins peptides was demonstrated. Our results show that rTcCathL1 is an effective peptidase that can be used to develop a drug for the enzyme therapy of various types of gluten intolerance.


Subject(s)
Celiac Disease , Tribolium , Animals , Cathepsin L/genetics , Enzyme Precursors , Gliadin , Glutamine , Humans , Hydrolysis , Peptide Hydrolases , Peptides
11.
Appl Environ Microbiol ; 88(11): e0051922, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35612301

ABSTRACT

Bacteria coping with oxygen deficiency use alternative terminal electron acceptors for NADH regeneration, particularly fumarate. Fumarate is reduced by the FAD_binding_2 domain of cytoplasmic fumarate reductase in many bacteria. The variability of the primary structure of this domain in homologous proteins suggests the existence of reducing activities with different specificities. Here, we produced and characterized one such protein encoded in the Vibrio harveyi genome (GenBank ID: AIV07243) and found it to be a specific NADH:acrylate oxidoreductase (ARD). This previously unknown enzyme is formed by the OYE-like, FMN_bind, and FAD_binding_2 domains and contains covalently bound flavin mononucleotide (FMN) and noncovalently bound flavin adenine dinucleotide (FAD) and FMN in a ratio of 1:1:1. The covalently bound FMN is absolutely required for activity and is attached by the specific flavin transferase, ApbE, to the FMN_bind domain. Quantitative reverse transcription PCR (RT-qPCR) and activity measurements indicated dramatic stimulation of ARD biosynthesis by acrylate in the V. harveyi cells grown aerobically. In contrast, the ard gene expression in the cells grown anaerobically without acrylate was higher than that in aerobic cultures and increased only 2-fold in the presence of acrylate. These findings suggest that the principal role of ARD in Vibrio is energy-saving detoxification of acrylate coming from the environment. IMPORTANCE The benefits of the massive genomic information accumulated in recent years for biological sciences have been limited by the lack of data on the function of most gene products. Approximately half of the known prokaryotic genes are annotated as "proteins with unknown functions," and many other genes are annotated incorrectly. Thus, the functional and structural characterization of the products of such genes, including identification of all existing enzymatic activities, is a pressing issue in modern biochemistry. In this work, we have shown that the product of the V. harveyi ard gene exhibits a yet-undescribed NADH:acrylate oxidoreductase activity. This activity may allow acrylate detoxification and its use as a terminal electron acceptor in anaerobic or substrate in aerobic respiration of marine and other bacteria.


Subject(s)
Flavin Mononucleotide , Vibrio , Acrylates , Amino Acid Sequence , FMN Reductase/metabolism , Flavin Mononucleotide/metabolism , Flavin-Adenine Dinucleotide/metabolism , Fumarates , NAD/metabolism , NADH Dehydrogenase/metabolism , NADH, NADPH Oxidoreductases/metabolism , Vibrio/metabolism
12.
J Biol Chem ; 298(5): 101914, 2022 05.
Article in English | MEDLINE | ID: mdl-35398352

ABSTRACT

N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.


Subject(s)
Acetyltransferases , Bacteria/metabolism , Peptide Elongation Factor Tu , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Guanosine Triphosphate/metabolism , Kinetics , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factor Tu/metabolism , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , RNA, Transfer, Amino Acyl/metabolism , Ribosomal Proteins , Ribosomes/metabolism
13.
Molecules ; 27(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35268835

ABSTRACT

Features of the biochemical adaptations of alkaliphilic fungi to exist in extreme environments could promote the production of active antibiotic compounds with the potential to control microorganisms, causing infections associated with health care. Thirty-eight alkaliphilic and alkalitolerant Emericellopsis strains (E. alkalina, E. cf. maritima, E. cf. terricola, Emericellopsis sp.) isolated from different saline soda soils and belonging to marine, terrestrial, and soda soil ecological clades were investigated for emericellipsin A (EmiA) biosynthesis, an antifungal peptaibol previously described for Emericellopsis alkalina. The analysis of the Emericellopsis sp. strains belonging to marine and terrestrial clades from chloride soils revealed another novel form with a mass of 1032.7 Da, defined by MALDI-TOF Ms/Ms spectrometers, as the EmiA lacked a hydroxyl (dEmiA). EmiA displayed strong inhibitory effects on cell proliferation and viability of HCT 116 cells in a dose- and time-dependent manners and induced apoptosis.


Subject(s)
Antifungal Agents
14.
Biomedicines ; 10(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35203523

ABSTRACT

Integrin-dependent adhesion of neutrophils to tissue, accompanied by the development of neutrophil-induced inflammation, occurs both in the focus of infection and in the absence of infection in metabolic disorders such as reperfusion after ischemia, diabetes mellitus, or the development of pneumonia in patients with cystic fibrosis or viral diseases. Hyaluronic acid (HA) plays an important role in the recruitment of neutrophils to tissues. 4-methylumbilliferon (4-MU), an inhibitor of HA synthesis, is used to treat inflammation, but its mechanism of action is unknown. We studied the effect of 4-MU on neutrophil adhesion and concomitant secretion using adhesion to fibronectin as a model for integrin-dependent adhesion. 4-MU reduced the spreading of neutrophils on the substrate and the concomitant secretion of granule proteins, including pro-inflammatory components. 4-MU also selectively blocked adhesion-induced release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, which can influence cell invasion by modifying the extracellular matrix. Finally, 4-MU inhibited the formation of cytonemes, the extracellular membrane secretory structures containing the pro-inflammatory bactericides of the primary granules. The anti-inflammatory effect of 4-MU may be associated with the suppression of secretory processes that ensure the neutrophil invasion and initiate inflammation. We suggest that HA, due to the peculiarities of its synthesis, can promote the release of secretory carriers from the cell and 4-MU can block this process.

15.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884925

ABSTRACT

Proteolytic enzymes are instrumental in various aspects of plant development, including senescence. This may be due not only to their digestive activity, which enables protein utilization, but also to fulfilling regulatory functions. Indeed, for the largest family of plant serine proteases, subtilisin-like proteases (subtilases), several members of which have been implicated in leaf and plant senescence, both non-specific proteolysis and regulatory protein processing have been documented. Here, we strived to identify the protein partners of phytaspase, a plant subtilase involved in stress-induced programmed cell death that possesses a characteristic aspartate-specific hydrolytic activity and unusual localization dynamics. A proximity-dependent biotin identification approach in Nicotiana benthamiana leaves producing phytaspase fused to a non-specific biotin ligase TurboID was employed. Although the TurboID moiety appeared to be unstable in the apoplast environment, several intracellular candidate protein interactors of phytaspase were identified. These were mainly, though not exclusively, represented by soluble residents of the endoplasmic reticulum, namely endoplasmin, BiP, and calreticulin-3. For calreticultin-3, whose gene is characterized by an enhanced expression in senescing leaves, direct interaction with phytaspase was confirmed in an in vitro binding assay using purified proteins. In addition, an apparent alteration of post-translational modification of calreticultin-3 in phytaspase-overproducing plant cells was observed.


Subject(s)
Nicotiana/metabolism , Plant Proteins/metabolism , Subtilisins/metabolism , Biotin/pharmacology , Biotinylation , Calreticulin/metabolism , Carbon-Nitrogen Ligases/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Protein Interaction Maps
16.
FEMS Microbiol Lett ; 368(18)2021 10 18.
Article in English | MEDLINE | ID: mdl-34610116

ABSTRACT

Azotobacter vinelandii, the model microbe in nitrogen fixation studies, uses the ferredoxin:NAD+-oxidoreductase Rnf to regenerate ferredoxin (flavodoxin), acting as an electron donor for nitrogenase. However, the relative contribution of Rnf to nitrogenase functioning is unknown because this bacterium contains another ferredoxin reductase, FixABCX. Furthermore, Rnf is flavinylated in the cell, but the importance and pathway of this modification reaction also remain largely unknown. We constructed A. vinelandii cells with impaired activities of FixABCX and/or putative flavin transferase ApbE. The ApbE-deficient mutant could not produce covalently flavinylated membrane proteins and demonstrated markedly decreased flavodoxin:NAD+ oxidoreductase activity and significant growth defects under diazotrophic conditions. The double ΔFix/ΔApbE mutation abolished the flavodoxin:NAD+ oxidoreductase activity and the ability of A. vinelandii to grow in the absence of a fixed nitrogen source. ApbE flavinylated a truncated RnfG subunit of Rnf1 by forming a phosphoester bond between flavin mononucleotide and a threonine residue. These findings indicate that Rnf (presumably its Rnf1 form) is the major ferredoxin-reducing enzyme in the nitrogen fixation system and that the activity of Rnf depends on its covalent flavinylation by the flavin transferase ApbE.


Subject(s)
Azotobacter vinelandii , Ferredoxins , Nitrogen Fixation , Transferases , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Bacterial Proteins/metabolism , Ferredoxins/metabolism , Flavins/chemistry , Membrane Proteins/metabolism , Nitrogenase/genetics , Nitrogenase/metabolism , Oxidoreductases/metabolism , Transferases/metabolism
17.
Front Pharmacol ; 12: 709719, 2021.
Article in English | MEDLINE | ID: mdl-34421605

ABSTRACT

Recent studies demonstrate the involvement of inflammatory processes in the development of depression and the anti-inflammatory effects of antidepressants. Infiltration and adhesion of neutrophils to nerve tissues and their aggressive secretion are considered as possible causes of inflammatory processes in depression. We studied the effect of the antidepressant imipramine on the adhesion and accompanied secretion of neutrophils under control conditions and in the presence of lipopolysaccharides (LPS). As a model of integrin-dependent neutrophil infiltration into tissues, we used integrin-dependent adhesion of neutrophils to the fibronectin-coated substrate. Imipramine inhibited neutrophil adhesion and concomitant secretion of proteins, including matrix metalloproteinase 9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL), which modify the extracellular matrix and basement membranes required for cell migration. Imipramine also significantly and selectively blocked the release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, an enzyme that affects the organization of the extracellular matrix by modifying collagen lysine residues. In contrast, imipramine enhanced the release of ROS by neutrophils during adhesion to fibronectin and stimulated apoptosis. The anti-inflammatory effect of imipramine may be associated with the suppression of neutrophil infiltration and their adhesion to nerve tissues by inhibiting the secretion of neutrophils, which provides these processes.

18.
Nat Commun ; 12(1): 4590, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321466

ABSTRACT

Covalent attachment of C16:0 to proteins (palmitoylation) regulates protein function. Proteins are also S-acylated by other fatty acids including C18:0. Whether protein acylation with different fatty acids has different functional outcomes is not well studied. We show here that C18:0 (stearate) and C18:1 (oleate) compete with C16:0 to S-acylate Cys3 of GNAI proteins. C18:0 becomes desaturated so that C18:0 and C18:1 both cause S-oleoylation of GNAI. Exposure of cells to C16:0 or C18:0 shifts GNAI acylation towards palmitoylation or oleoylation, respectively. Oleoylation causes GNAI proteins to shift out of cell membrane detergent-resistant fractions where they potentiate EGFR signaling. Consequently, exposure of cells to C18:0 reduces recruitment of Gab1 to EGFR and reduces AKT activation. This provides a molecular mechanism for the anti-tumor effects of C18:0, uncovers a mechanistic link how metabolites affect cell signaling, and provides evidence that the identity of the fatty acid acylating a protein can have functional consequences.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction/physiology , Stearic Acids/metabolism , Acylation , Cell Membrane/metabolism , Cell Proliferation , Fatty Acids/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Humans , Lipoylation , MCF-7 Cells , Oleic Acids/metabolism
19.
Drug Dev Res ; 82(8): 1217-1226, 2021 12.
Article in English | MEDLINE | ID: mdl-34060112

ABSTRACT

The receptor for advanced glycation end products (RAGE) plays an essential role in Alzheimer's disease (AD). We previously demonstrated that a fragment (60-76) of RAGE improved the memory of olfactory bulbectomized (OBX) and Tg 5 × FAD mice - animal models of AD. The peptide analog (60-76) with protected N- and C-terminal groups was more active than the free peptide in Tg 5 × FAD mice. This study investigated proteolytic cleavage of the RAGE fragment (60-76) and its C- and N-terminally modified analog by blood serum using HPLC and mass spectrometry. The modified peptide was proteolyzed slower than the free peptide. Degrading the protected analog resulted in shortened fragments with memory-enhancing effects, whereas the free peptide yielded inactive fragments. After administering the different peptides to OBX mice, their performance in a spatial memory task revealed that the effective dose of the modified peptide was five times lower than that of the free peptide. HPLC and mass spectrometry analysis of the proteolytic products allowed us to clarify the differences in the neuroprotective activity conferred by administering these two peptides to AD animal models. The current study suggests that the modified RAGE fragment is more promising for the development of anti-AD therapy than its free analog.


Subject(s)
Alzheimer Disease/drug therapy , Neuroprotective Agents/therapeutic use , Peptide Fragments/therapeutic use , Proteolysis , Receptor for Advanced Glycation End Products/metabolism , Animals , Chromatography, High Pressure Liquid , Disease Models, Animal , Male , Mass Spectrometry , Mice
20.
Cells ; 10(3)2021 03 05.
Article in English | MEDLINE | ID: mdl-33807594

ABSTRACT

During infection or certain metabolic disorders, neutrophils can escape from blood vessels, invade and attach to other tissues. The invasion and adhesion of neutrophils is accompanied and maintained by their own secretion. We have previously found that adhesion of neutrophils to fibronectin dramatically and selectively stimulates the release of the free amino acid hydroxylysine. The role of hydroxylysine and lysyl hydroxylase in neutrophil adhesion has not been studied, nor have the processes that control them. Using amino acid analysis, mass spectrometry and electron microscopy, we found that the lysyl hydroxylase inhibitor minoxidil, the matrix metalloproteinase inhibitor doxycycline, the PI3K/Akt pathway inhibitors wortmannin and the Akt1/2 inhibitor and drugs that affect the actin cytoskeleton significantly and selectively block the release of hydroxylysine and partially or completely suppress spreading of neutrophils. The actin cytoskeleton effectors and the Akt 1/2 inhibitor also increase the phenylalanine release. We hypothesize that hydroxylysine release upon adhesion is the result of the activation of lysyl hydroxylase in interaction with matrix metalloproteinase, the PI3K/Akt pathway and intact actin cytoskeleton, which play important roles in the recruitment of neutrophils into tissue through extracellular matrix remodeling.


Subject(s)
Amino Acids/metabolism , Hydroxylysine/metabolism , Neutrophils/metabolism , Apoptosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...