Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; : e202300509, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38185913

ABSTRACT

This study investigates the relationship between body hydration levels and skin hydration using spatially resolved diffuse reflectance spectroscopy. The research involved monitoring skin dehydration and rehydration under various conditions, including thermal and physical loads on healthy volunteers, and diuretic therapy in patients with edema syndrome. Findings indicate a correlation between body mass reduction and skin hydration: a 1% loss in body mass corresponds to a 10% decrease in skin hydration. During thermal stress, water absorption at 970 nm decreased monotonically without recovery. Physical activity resulted in approximately 10% changes in skin water content within 20 min, followed by rehydration. Patients with edema syndrome exhibited the most substantial decrease in water absorption amplitude, at nearly 30%, during diuretic treatment. These results support optical spectroscopy as a non-invasive tool for assessing body hydration, with implications for developing portable hydration monitoring devices for clinical and sports applications.

2.
J Biomed Opt ; 28(5): 057002, 2023 05.
Article in English | MEDLINE | ID: mdl-37193365

ABSTRACT

Significance: Edema occurs in the course of various skin diseases. It manifests itself in changes in water concentrations in skin layers: dermis and hypodermis and their thicknesses. In medicine and cosmetology, objective tools are required to assess the skin's physiological parameters. The dynamics of edema and the skin of healthy volunteers were studied using spatially resolved diffuse reflectance spectroscopy (DRS) in conjunction with ultrasound (US). Aim: In this work, we have developed a method based on DRS with a spatial resolution (SR DRS), allowing us to simultaneously assess water content in the dermis, dermal thickness, and hypodermal thickness. Approach: An experimental investigation of histamine included edema using SR DRS under the control of US was conducted. An approach for skin parameter determination was studied and confirmed using Monte-Carlo simulation of diffuse reflectance spectra for a three-layered system with the varying dermis and hypodermis parameters. Results: It was shown that an interfiber distance of 1 mm yields a minimal relative error of water content determination in the dermis equal to 9.3%. The lowest error of hypodermal thickness estimation was achieved with the interfiber distance of 10 mm. Dermal thickness for a group of volunteers (7 participants, 21 measurement sites) was determined using SR DRS technique with an 8.3% error using machine learning approaches, taking measurements at multiple interfiber distances into account. Hypodermis thickness was determined with root mean squared error of 0.56 mm for the same group. Conclusions: This study demonstrates that measurement of the skin diffuse reflectance response at multiple distances makes it possible to determine the main parameters of the skin and will serve as the basis for the development and verification of an approach that works in a wide range of skin structure parameters.


Subject(s)
Edema , Skin , Humans , Skin/diagnostic imaging , Skin/chemistry , Spectrum Analysis/methods , Computer Simulation , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...