Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 13(13): 1902-1922, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35671176

ABSTRACT

Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.


Subject(s)
Hallucinogens , Animals , Artificial Intelligence , Behavior, Animal , Hallucinogens/chemistry , Hallucinogens/pharmacology , Phenethylamines/chemistry , Phenethylamines/pharmacology , Zebrafish
2.
Sci Rep ; 11(1): 14289, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253753

ABSTRACT

Long-term recurrent stress is a common cause of neuropsychiatric disorders. Animal models are widely used to study the pathogenesis of stress-related psychiatric disorders. The zebrafish (Danio rerio) is emerging as a powerful tool to study chronic stress and its mechanisms. Here, we developed a prolonged 11-week chronic unpredictable stress (PCUS) model in zebrafish to more fully mimic chronic stress in human populations. We also examined behavioral and neurochemical alterations in zebrafish, and attempted to modulate these states by 3-week treatment with an antidepressant fluoxetine, a neuroprotective omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA), a pro-inflammatory endotoxin lipopolysaccharide (LPS), and their combinations. Overall, PCUS induced severe anxiety and elevated norepinephrine levels, whereas fluoxetine (alone or combined with other agents) corrected most of these behavioral deficits. While EPA and LPS alone had little effects on the zebrafish PCUS-induced anxiety behavior, both fluoxetine (alone or in combination) and EPA restored norepinephrine levels, whereas LPS + EPA increased dopamine levels. As these data support the validity of PCUS as an effective tool to study stress-related pathologies in zebrafish, further research is needed into the ability of various conventional and novel treatments to modulate behavioral and neurochemical biomarkers of chronic stress in this model organism.


Subject(s)
Eicosapentaenoic Acid/metabolism , Fluoxetine/pharmacology , Lipopolysaccharides/chemistry , Stress, Psychological/drug therapy , Animals , Antidepressive Agents/pharmacology , Behavior, Animal , Disease Models, Animal , Emotions , Endotoxins/metabolism , Neurochemistry/methods , Norepinephrine/blood , Phenotype , Stress, Physiological , Zebrafish
3.
J Neurosci Methods ; 337: 108637, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32081675

ABSTRACT

BACKGROUND: Affective disorders, especially depression and anxiety, are highly prevalent, debilitating mental illnesses. Animal experimental models are a valuable tool in translational affective neuroscience research. A hallmark phenotype of clinical and experimental depression, the learned helplessness, has become a key target for 'behavioral despair'-based animal models of depression. The zebrafish (Danio rerio) has recently emerged as a promising novel organism for affective disease modeling and CNS drug screening. Despite being widely used to assess stress and anxiety-like behaviors, there are presently no clear-cut despair-like models in zebrafish. NEW METHOD: Here, we introduce a novel behavioral paradigm, the zebrafish tail immobilization (ZTI) test, as a potential tool to assess zebrafish despair-like behavior. Conceptually similar to rodent 'despair' models, the ZTI protocol involves immobilizing the caudal half of the fish body for 5 min, leaving the cranial part to move freely, suspended vertically in a small beaker with water. RESULTS: To validate this model, we used exposure to low-voltage electric shock, alarm pheromone, selected antidepressants (sertraline and amitriptyline) and an anxiolytic drug benzodiazepine (phenazepam), assessing the number of mobility episodes, time spent 'moving', total distance moved and other activity measures of the cranial part of the body, using video-tracking. Both electric shock and alarm pheromone decreased zebrafish activity in this test, antidepressants increased it, and phenazepam was inactive. Furthermore, a 5-min ZTI exposure increased serotonin turnover, elevating the 5-hydroxyindoleacetic acid/serotonin ratio in zebrafish brain, while electric shock prior to ZTI elevated both this and the 3,4-dihydroxyphenylacetic acid/dopamine ratios. In contrast, preexposure to antidepressants sertraline and amitriptyline lowered both ratios, compared to the ZTI test-exposed fish. COMPARISON WITH EXISTINGMETHOD(S): The ZTI test is the first despair-like experimental model in zebrafish. CONCLUSIONS: Collectively, this study suggests the ZTI test as a potentially useful protocol to assess stress-/despair-related behaviors, potentially relevant to CNS drug screening and behavioral phenotyping of zebrafish.


Subject(s)
Pharmaceutical Preparations , Zebrafish , Animals , Anxiety/drug therapy , Behavior, Animal , Disease Models, Animal , Motor Activity
SELECTION OF CITATIONS
SEARCH DETAIL
...