Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Photoacoustics ; 35: 100577, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38149035

ABSTRACT

In this work, we report on the novel employment of lithium niobate tuning forks as acoustic transducers in photoacoustic spectroscopy for gas sensing. The lithium niobate tuning fork (LiNTF) exhibits a fundamental resonance frequency of 39196.6 Hz and a quality factor Q = 5900 at atmospheric pressure. The possibility to operate the LiNTF as a photoacoustic wave detector was demonstrated targeting a water vapor absorption line falling at 7181.14 cm-1 (1.39 µm). A noise equivalent concentration of 2 ppm was reached with a signal integration time of 20 s. These preliminary results open the path towards integrated photonic devices for gas sensing with LiNTF-based detectors on lithium niobate platforms.

2.
Light Sci Appl ; 5(5): e16078, 2016 May.
Article in English | MEDLINE | ID: mdl-30167165

ABSTRACT

The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field-induced intervalley scattering, resulting in a reduced carrier mobility thereby damping the plasmonic response. We demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide films. Nonlinear plasmonic metamaterials show potential for use in ultrafast terahertz (THz) optics and for passive protection of sensitive electromagnetic devices.

3.
Opt Express ; 17(23): 21289-301, 2009 Nov 09.
Article in English | MEDLINE | ID: mdl-19997368

ABSTRACT

Microfabricated Lamellar grating interferometers (LGI) require fewer components compared to Michelson interferotemeters and offer compact and broadband Fourier transform spectrometers (FTS) with good spectral resolution, high speed and high efficiency. This study presents the fundamental equations that govern the performance and limitations of LGI based FTS systems. Simulations and experiments were conducted to demonstrate and explain the periodic nature of the interferogram envelope due to Talbot image formation. Simulations reveal that the grating period should be chosen large enough to avoid Talbot phase reversal at the expense of mixing of the diffraction orders at the detector. Optimal LGI grating period selection depends on a number of system parameters and requires compromises in spectral resolution and signal-to-bias ratio (SBR) of the interferogram within the spectral range of interest. New analytical equations are derived for spectral resolution and SBR of LGI based FTS systems.


Subject(s)
Interferometry/instrumentation , Optics and Photonics , Algorithms , Computer Simulation , Equipment Design , Fourier Analysis , Interferometry/methods , Lasers , Models, Statistical , Models, Theoretical , Spectroscopy, Fourier Transform Infrared/instrumentation , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...