Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 560: 139-145, 2021 06 30.
Article in English | MEDLINE | ID: mdl-33989905

ABSTRACT

Drug screening and disease modelling for skeletal muscle related pathologies would strongly benefit from the integration of myogenic cells derived from human pluripotent stem cells within miniaturized cell culture devices, such as microfluidic platform. Here, we identified the optimal culture conditions that allow direct differentiation of human pluripotent stem cells in myogenic cells within microfluidic devices. Myogenic cells are efficiently derived from both human embryonic (hESC) or induced pluripotent stem cells (hiPSC) in eleven days by combining small molecules and non-integrating modified mRNA (mmRNA) encoding for the master myogenic transcription factor MYOD. Our work opens new perspective for the development of patient-specific platforms in which a one-step myogenic differentiation could be used to generate skeletal muscle on-a-chip.


Subject(s)
Cell Differentiation/genetics , Muscle Fibers, Skeletal/cytology , MyoD Protein/genetics , Pluripotent Stem Cells/cytology , Cell Line , Humans , Lab-On-A-Chip Devices , Mesoderm/cytology , Muscle Development , RNA, Messenger , Transfection
2.
PLoS One ; 15(5): e0232081, 2020.
Article in English | MEDLINE | ID: mdl-32374763

ABSTRACT

The reproduction of reliable in vitro models of human skeletal muscle is made harder by the intrinsic 3D structural complexity of this tissue. Here we coupled engineered hydrogel with 3D structural cues and specific mechanical properties to derive human 3D muscle constructs ("myobundles") at the scale of single fibers, by using primary myoblasts or myoblasts derived from embryonic stem cells. To this aim, cell culture was performed in confined, laminin-coated micrometric channels obtained inside a 3D hydrogel characterized by the optimal stiffness for skeletal muscle myogenesis. Primary myoblasts cultured in our 3D culture system were able to undergo myotube differentiation and maturation, as demonstrated by the proper expression and localization of key components of the sarcomere and sarcolemma. Such approach allowed the generation of human myobundles of ~10 mm in length and ~120 µm in diameter, showing spontaneous contraction 7 days after cell seeding. Transcriptome analyses showed higher similarity between 3D myobundles and skeletal signature, compared to that found between 2D myotubes and skeletal muscle, mainly resulting from expression in 3D myobundles of categories of genes involved in skeletal muscle maturation, including extracellular matrix organization. Moreover, imaging analyses confirmed that structured 3D culture system was conducive to differentiation/maturation also when using myoblasts derived from embryonic stem cells. In conclusion, our structured 3D model is a promising tool for modelling human skeletal muscle in healthy and diseases conditions.


Subject(s)
Cell Culture Techniques , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/cytology , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Dimethylpolysiloxanes/chemistry , Humans , Hydrogels/chemistry , Materials Testing , Mice , Models, Biological , Molecular Conformation , Muscle Development , Muscle, Skeletal/physiology , Myoblasts/cytology , Myoblasts/physiology , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Tissue Engineering/instrumentation , Tissue Engineering/methods
3.
Mater Sci Eng C Mater Biol Appl ; 96: 625-634, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30606574

ABSTRACT

Hydrogels are an increasingly attractive choice in the fields of regenerative medicine, wound care and tissue engineering as important forms of bio-scaffolds. For many clinical needs, injectable in situ crosslinkable hydrogels are strongly preferred, due to treatment effectiveness and ease of use. In this study, hyaluronic acid (HA), containing side-arms linked to photo-active coumarin moieties, was used for the preparation of wall-to-wall hydrogels. This photocrosslinkable HA, hereafter called HA-TEG-coumarin, produces colourless aqueous solutions that solidify upon near-UV irradiation (at a specific wavelength of 365 nm) via a clean [2 + 2] photocycloaddition reaction, without by-products formation. The crosslinking event, a robust and non-cytotoxic process, does not require catalysts or radical initiators: in the field of hyaluronan photocrosslinking, this innovative feature is significant to ensure the whole biocompatibility and to avoid collateral reactions. Mechanical and rheological tests showed that hyaluronan derivatives became hydrogels after 3-5 min of irradiation, with average values for bulk and surface elastic moduli of about 32 kPa and 193 kPa, respectively. Fluorescence recovery after photobleaching (FRAP) assay showed that the hydrogels are porous and allow a good permeation for nutrients and growth factors. Cell metabolism and proliferation assays revealed that hydrogel-encapsulated fibroblasts maintained their viability and that HA-TEG-coumarin sustained the proliferation of non-adherent myoblasts. For all of these reasons and thanks to a safe free-radical approach, this novel hyaluronan coumarin derivative could be a good candidate for tissue engineering and regenerative medicine applications.


Subject(s)
Coumarins/chemistry , Cross-Linking Reagents/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Photochemical Processes , Tissue Engineering , Ultraviolet Rays , Animals , Cell Line , Humans , Materials Testing , Mice
4.
Ann Biomed Eng ; 47(3): 852-865, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30569242

ABSTRACT

Cell junctions play an important role in coordinating intercellular communication and intracellular ultrastructures, with desmosomes representing the mechanical component of such intercellular connections. Mutations to desmosomal component proteins compromise both inter- and intracellular signalling and correlate with severe diseases like arrhythmogenic cardiomyopathy (AC), with pathological phenotypes in tissues subjected to intense mechanical stimuli (skin and heart). Here, we explore the consequences of dysfunctional desmosomes in one line of induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) derived from an AC patient with a homozygous pathogenic mutation in desmosomal component protein plakophilin-2 (PKP2). We specifically aim at investigating the response to mechanical stress in an AC-pathological setting. To this aim, we aligned hiPS-CMs on stretchable patterned substrates to mimic the cardiac functional syncytium and compared transcriptomic profiles of PKP2-mutated hiPS-CMs and healthy controls. AC-CMs display altered transcription towards a pro-fibrotic gene expression program, and concurrent dysregulation of gene sets closely associated with cell-to-cell connections. By integrating the culture substrate with a macroscopic stretching setup able to accurately apply cyclic uniaxial elongation, we show how response to mechanical loads in AC-CMs deviates from the canonical mechanical-stress response observed in healthy-CMs.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Cardiomyopathies/physiopathology , Myocytes, Cardiac/physiology , Body Patterning , Desmosomes/physiology , Finite Element Analysis , Gene Expression Profiling , Humans , Induced Pluripotent Stem Cells/cytology , Physical Stimulation , Plakophilins/genetics , Stress, Mechanical
5.
Stem Cell Res ; 25: 107-114, 2017 12.
Article in English | MEDLINE | ID: mdl-29125993

ABSTRACT

Physical cues are major determinants of cellular phenotype and evoke physiological and pathological responses on cell structure and function. Cellular models aim to recapitulate basic functional features of their in vivo counterparts or tissues in order to be of use in in vitro disease modeling or drug screening and testing. Understanding how culture systems affect in vitro development of human pluripotent stem cell (hPSC)-derivatives allows optimization of cellular human models and gives insight in the processes involved in their structural organization and function. In this work, we show involvement of the mechanotransduction pathway RhoA/ROCK in the structural reorganization of hPSC-derived cardiomyocytes after adhesion plating. These structural changes have a major impact on the intracellular localization of SERCA2 pumps and concurrent improvement in calcium cycling. The process is triggered by cell interaction with the culture substrate, which mechanical cues drive sarcomeric alignment and SERCA2a spreading and relocalization from a perinuclear to a whole-cell distribution. This structural reorganization is mediated by the mechanical properties of the substrate, as shown by the process failure in hPSC-CMs cultured on soft 4kPa hydrogels as opposed to physiologically stiff 16kPa hydrogels and glass. Finally, pharmacological inhibition of Rho-associated protein kinase (ROCK) by different compounds identifies this specific signaling pathway as a major player in SERCA2 localization and the associated improvement in hPSC-CMs calcium handling ability in vitro.


Subject(s)
Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Humans , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
6.
World J Radiol ; 9(1): 10-16, 2017 Jan 28.
Article in English | MEDLINE | ID: mdl-28144402

ABSTRACT

AIM: To investigate the role of contrast enhanced ultrasound (CEUS) in evaluating patients with renal function impairment (RFI) showing: (1) acute renal failure (ARF) of suspicious vascular origin; or (2) suspicious renal lesions. METHODS: We retrospectively evaluated patients addressed to CEUS over an eight years period to rule-out vascular causes of ARF (first group of 50 subjects) or assess previously found suspicious renal lesions (second group of 41 subjects with acute or chronic RFI). After preliminary grey-scale and color Doppler investigation, each kidney was investigated individually with CEUS, using 1.2-2.4 mL of a sulfur hexafluoride-filled microbubble contrast agent. Image analysis was performed in consensus by two readers who reviewed digital clips of CEUS. We calculated the detection rate of vascular abnormalities in the first group and performed descriptive statistics of imaging findings for the second group. RESULTS: In the first group, CEUS detected renal infarction or cortical ischemia in 18/50 patients (36%; 95%CI: 23.3-50.9) and 1/50 patients (2%; 95%CI: 0.1-12), respectively. The detection rate of infarction was significantly higher (P = 0.0002; McNemar test) compared to color Doppler ultrasonography (10%). No vascular causes of ARF were identified in the remaining 31/50 patients (62%). In the second group, CEUS detected 41 lesions on 39 patients, allowing differentiation between solid lesions (21/41; 51.2%) vs complex cysts (20/41; 48.8%), and properly addressing 15/39 patients to intervention when feasible based on clinical conditions (surgery and cryoablation in 13 and 2 cases, respectively). Cysts were categorized Bosniak II, IIF, III and IV in 8, 5, 4 and 3 cases, respectively. In the remaining two patients, CEUS found 1 pseudolesion and 1 subcapsular hematoma. CONCLUSION: CEUS showed high detection rate of renal perfusion abnormalities in patients with ARF, influencing the management of patients with acute or chronic RFI and renal masses throughout their proper characterization.

7.
Langmuir ; 32(46): 12190-12201, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27643958

ABSTRACT

The mechanical activity of cardiomyocytes is the result of a process called excitation-contraction coupling (ECC). A membrane depolarization wave induces a transient cytosolic calcium concentration increase that triggers activation of calcium-sensitive contractile proteins, leading to cell contraction and force generation. An experimental setup capable of acquiring simultaneously all ECC features would have an enormous impact on cardiac drug development and disease study. In this work, we develop a microengineered elastomeric substrate with tailor-made surface chemistry to measure simultaneously the uniaxial contraction force and the calcium transients generated by single human cardiomyocytes in vitro. Microreplication followed by photocuring is used to generate an array consisting of elastomeric micropillars. A second photochemical process is employed to spatially control the surface chemistry of the elastomeric pillar. As result, human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be confined in rectangular cell-adhesive areas, which induce cell elongation and promote suspended cell anchoring between two adjacent micropillars. In this end-to-end conformation, confocal fluorescence microscopy allows simultaneous detection of calcium transients and micropillar deflection induced by a single-cell uniaxial contraction force. Computational finite elements modeling (FEM) and 3D reconstruction of the cell-pillar interface allow force quantification. The platform is used to follow calcium dynamics and contraction force evolution in hESC-CMs cultures over the course of several weeks. Our results show how a biomaterial-based platform can be a versatile tool for in vitro assaying of cardiac functional properties of single-cell human cardiomyocytes, with applications in both in vitro developmental studies and drug screening on cardiac cultures.


Subject(s)
Calcium/chemistry , Elastomers , Human Embryonic Stem Cells/cytology , Myocytes, Cardiac/cytology , Cell Differentiation , Cells, Cultured , Humans , Mechanical Phenomena , Microtechnology
8.
Stem Cells Transl Med ; 5(12): 1676-1683, 2016 12.
Article in English | MEDLINE | ID: mdl-27502519

ABSTRACT

: Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation. SIGNIFICANCE: This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from patients with Duchenne muscular dystrophy (DMD), using a microengineered model. An ad hoc experimental strategy was designed to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. This microscaled in vitro model, which validated previous in vivo preclinical work, revealed that mesoangioblasts showed unexpected efficiency as compared with myoblasts in dystrophin production. Consequently, this model may be used to predict efficacy of new drugs or therapies aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo.


Subject(s)
Cell Differentiation , Dystrophin/metabolism , Models, Biological , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/metabolism , Myoblasts/metabolism , Myoblasts/pathology , Tissue Donors , Biological Assay , Coculture Techniques , Dystrophin/chemistry , Humans , Microarray Analysis , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Duchenne/pathology , Protein Domains , Reproducibility of Results
9.
Nat Methods ; 13(5): 446-52, 2016 05.
Article in English | MEDLINE | ID: mdl-27088312

ABSTRACT

We report that the efficiency of reprogramming human somatic cells to induced pluripotent stem cells (hiPSCs) can be dramatically improved in a microfluidic environment. Microliter-volume confinement resulted in a 50-fold increase in efficiency over traditional reprogramming by delivery of synthetic mRNAs encoding transcription factors. In these small volumes, extracellular components of the TGF-ß and other signaling pathways exhibited temporal regulation that appears critical to acquisition of pluripotency. The high quality and purity of the resulting hiPSCs (µ-hiPSCs) allowed direct differentiation into functional hepatocyte- and cardiomyocyte-like cells in the same platform without additional expansion.


Subject(s)
Cellular Reprogramming Techniques/methods , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/cytology , Microfluidics/methods , Cells, Cultured , Fibroblasts/cytology , Humans , RNA, Messenger/genetics
10.
Curr Opin Biotechnol ; 25: 45-50, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24484880

ABSTRACT

Organ-on-chip systems integrate microfluidic technology and living cells to study human physiology and pathophysiology. These human in vitro models are promising substitutes for animal testing, and their small scale enables precise control of culture conditions and high-throughput experiments, which would not be economically sustainable on a macroscopic level. Multiple sources of biological material are used in the development of organ-on-chips, from biopsies to stem cells. Each source has its own peculiarities and technical requirements for integration into microfluidic chips, and is suitable for specific applications. While a biopsy is the tissue of choice for the biomimetic response to ageing, induced pluripotent stem cells hold great promise for the study of genetic-related disease pathogenesis, and primary cultures can fill the gap.


Subject(s)
Microfluidics/methods , Animals , Cell Culture Techniques , Humans , Models, Biological , Organ Culture Techniques , Stem Cells/cytology
11.
Article in English | MEDLINE | ID: mdl-26015941

ABSTRACT

Duchenne muscular dystrophy (DMD)-associated cardiac diseases are emerging as a major cause of morbidity and mortality in DMD patients, and many therapies for treatment of skeletal muscle failed to improve cardiac function. The reprogramming of patients' somatic cells into pluripotent stem cells, combined with technologies for correcting the genetic defect, possesses great potential for the development of new treatments for genetic diseases. In this study, we obtained human cardiomyocytes from DMD patient-derived, induced pluripotent stem cells genetically corrected with a human artificial chromosome carrying the whole dystrophin genomic sequence. Stimulation by cytokines was combined with cell culturing on hydrogel with physiological stiffness, allowing an adhesion-dependent maturation and a proper dystrophin expression. The obtained cardiomyocytes showed remarkable sarcomeric organization of cardiac troponin T and α-actinin, expressed cardiac-specific markers, and displayed electrically induced calcium transients lasting less than 1 second. We demonstrated that the human artificial chromosome carrying the whole dystrophin genomic sequence is stably maintained throughout the cardiac differentiation process and that multiple promoters of the dystrophin gene are properly activated, driving expression of different isoforms. These dystrophic cardiomyocytes can be a valuable source for in vitro modeling of DMD-associated cardiac disease. Furthermore, the derivation of genetically corrected, patient-specific cardiomyocytes represents a step toward the development of innovative cell and gene therapy approaches for DMD.

12.
Biol Cell ; 105(12): 549-60, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24024612

ABSTRACT

BACKGROUND INFORMATION: In the last few years, recent evidence has revealed that inside an apparently homogeneous cell population there indeed appears to be heterogeneity. This is particularly true for embryonic stem (ES) cells where markers of pluripotency are dynamically expressed within the single cells. In this work, we have designed and tested a new set of primers for multiplex PCR detection of pluripotency markers expression, and have applied it to perform a single-cell analysis in murine ES cells cultured on three different substrates that could play an important role in controlling cell behaviour and fate: (i) mouse embryonic fibroblast (MEF) feeder layer, as the standard method for ES cells culture; (ii) Matrigel coating; (iii) micropatterned hydrogel. RESULTS: Compared with population analysis, using a single-cell approach, we were able to evaluate not only the number of cells that maintained the expression of a specific gene but, most importantly, how many cells co-expressed different markers. We found that micropatterned hydrogel seems to represent a good alternative to MEF, as the expression of stemness markers is better preserved than in Matrigel culture. CONCLUSIONS: This single-cell assay allows for the assessment of the stemness maintenance at a single-cell level in terms of gene expression profile, and can be applied in stem cell research to characterise freshly isolated and cultured cells, or to standardise, for instance, the method of culture closely linked to the transcriptional activity and the differentiation potential.


Subject(s)
Biomarkers/metabolism , Cell Culture Techniques/instrumentation , Embryonic Stem Cells/cytology , Polymerase Chain Reaction/methods , Single-Cell Analysis/methods , Animals , Cell Differentiation , Cells, Cultured , Culture Media/chemistry , Culture Media/metabolism , DNA Primers/genetics , DNA Primers/metabolism , Embryonic Stem Cells/metabolism , Feeder Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Male , Mice
13.
PLoS One ; 7(11): e48483, 2012.
Article in English | MEDLINE | ID: mdl-23152776

ABSTRACT

INTRODUCTION: The heart is one of the least regenerative organs in the body and any major insult can result in a significant loss of heart cells. The development of an in vitro-based cardiac tissue could be of paramount importance for many aspects of the cardiology research. In this context, we developed an in vitro assay based on human cardiomyocytes (hCMs) and ad hoc micro-technologies, suitable for several applications: from pharmacological analysis to physio-phatological studies on transplantable hCMs. We focused on the development of an assay able to analyze not only hCMs viability, but also their functionality. METHODS: hCMs were cultured onto a poly-acrylamide hydrogel with tunable tissue-like mechanical properties and organized through micropatterning in a 20×20 array. Arrayed hCMs were characterized by immunofluorescence, GAP-FRAP analyses and live and dead assay. Their functionality was evaluated monitoring the excitation-contraction coupling. RESULTS: Micropatterned hCMs maintained the expression of the major cardiac markers (cTnT, cTnI, Cx43, Nkx2.5, α-actinin) and functional properties. The spontaneous contraction frequency was (0.83±0.2) Hz, while exogenous electrical stimulation lead to an increase up to 2 Hz. As proof of concept that our device can be used for screening the effects of pathological conditions, hCMs were exposed to increasing levels of H(2)O(2). Remarkably, hCMs viability was not compromised with exposure to 0.1 mM H(2)O(2), but hCMs contractility was dramatically suppressed. As proof of concept, we also developed a microfluidic platform to selectively treat areas of the cell array, in the perspective of performing multi-parametric assay. CONCLUSIONS: Such system could be a useful tool for testing the effects of multiple conditions on an in vitro cell model representative of human heart physiology, thus potentially helping the processes of therapy and drug development.


Subject(s)
Embryonic Stem Cells/cytology , Gene Expression Profiling , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Oligonucleotide Array Sequence Analysis , Cell Culture Techniques , Cell Differentiation , Cell Line , Humans , Hydrogen Peroxide/pharmacology , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Oxidative Stress/genetics
14.
Biotechnol Bioeng ; 109(12): 3119-32, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22674472

ABSTRACT

The therapeutic potential of human pluripotent stem (hPS) cells is threatened, among various problems, by the difficulty to homogenously direct cell differentiation into specific lineages. The transition from hPSC into committed differentiated cells is accompanied by secretome activity, remodeling of extracellular matrix and self-organization into germ layers. In this work, we aimed to investigate how different three-dimensional microenvironments regulate the early differentiation of the three germ layers in human embryonic stem (hES) cells derived embryoid bodies. In particular, a permeable, biocompatible, hydrogel microwell array was specifically designed for recreating a confined niche in which EB secreted molecules accumulate in accordance with hydrogel diffusional cut-off. Fluorescence recovery after photobleaching technique was performed to accurately evaluate hydrogel permeability, mesh size and diffusional cutoff for soluble molecules. Three different culture conditions of EB culture were analyzed: suspension, confinement in microwells of width/depth ratio 1:1 and 1:2. Results show that EBs cultured in microwells are viable and have comparable average size after 8 days culture. Whole genome microarrays show that significative differential gene expression was observed between suspension and confined EBs culture. In particular, EBs culture in microwells promotes the expression of genes involved in pattern specification processes, brain development, ectoderm and endoderm differentiation. On the contrary, suspension EBs express instead genes involved in mesoderm specification and heart development. These results suggest that local accumulation of EBs secreted molecules drives differentiation patterns, as confirmed by immunofluorescence of germ layer markers, in hydrogel confined EB culture from both hES cells and human induced pluripotent stem (hiPS) cells. Our findings highlight an additional potential role of biomaterial in controlling hPSC differentiation through secreted factor niche specification.


Subject(s)
Cell Culture Techniques/methods , Embryoid Bodies/physiology , Pluripotent Stem Cells/physiology , Stem Cell Niche/physiology , Acrylic Resins/chemistry , Cell Culture Techniques/instrumentation , Cell Differentiation/physiology , Cell Survival/physiology , Cluster Analysis , Embryoid Bodies/cytology , Fluorescence Recovery After Photobleaching , Gene Expression Profiling , Germ Layers/cytology , Germ Layers/physiology , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Microscopy, Fluorescence , Oligonucleotide Array Sequence Analysis , Particle Size , Pluripotent Stem Cells/cytology
15.
Langmuir ; 28(5): 2718-26, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22217143

ABSTRACT

Micropatterning techniques and substrate engineering are becoming useful tools to investigate several aspects of cell-cell interaction biology. In this work, we rationally study how different micropatterning geometries can affect myoblast behavior in the early stage of in vitro myogenesis. Soft hydrogels with physiological elastic modulus (E = 15 kPa) were micropatterned in parallel lanes (100, 300, and 500 µm width) resulting in different local and global myoblast densities. Proliferation and differentiation into multinucleated myotubes were evaluated for murine and human myoblasts. Wider lanes showed a decrease in murine myoblast proliferation: (69 ± 8)% in 100 µm wide lanes compared to (39 ± 7)% in 500 µm lanes. Conversely, fusion index increased in wider lanes: from (46 ± 7)% to (66 ± 7)% for murine myoblasts, and from (15 ± 3)% to (36 ± 2)% for human primary myoblasts, using a patterning width of 100 and 500 µm, respectively. These results are consistent with both computational modeling data and conditioned medium experiments, which demonstrated that wider lanes favor the accumulation of endogenous secreted factors. Interestingly, human primary myoblast proliferation is not affected by patterning width, which may be because the high serum content of their culture medium overrides the effect of secreted factors. These data highlight the role of micropatterning in shaping the cellular niche through secreted factor accumulation, and are of paramount importance in rationally understanding myogenesis in vitro for the correct design of in vitro skeletal muscle models.


Subject(s)
Cell Culture Techniques/methods , Hydrogels/chemistry , Microarray Analysis/methods , Myoblasts/cytology , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Computer Simulation , Humans , Mice
16.
Biomicrofluidics ; 6(2): 24127-2412712, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23734169

ABSTRACT

Advanced cell culture systems creating a controlled and predictable microenvironment together with computational modeling may be useful tools to optimize the efficiency of cell infections. In this paper, we will present a phenomenological study of a virus-host infection system, and the development of a multilayered microfluidic platform used to accurately tune the virus delivery from a diffusive-limited regime to a convective-dominated regime. Mathematical models predicted the convective-diffusive regimes developed within the system itself and determined the dominating mass transport phenomena. Adenoviral vectors carrying the enhanced green fluorescent protein (EGFP) transgene were used at different multiplicities of infection (MOI) to infect multiple cell types, both in standard static and in perfused conditions. Our results validate the mathematical models and demonstrate how the infection processes through perfusion via microfluidic platform led to an enhancement of adenoviral infection efficiency even at low MOIs. This was particularly evident at the longer time points, since the establishment of steady-state condition guaranteed a constant viral concentration close to cells, thus strengthening the efficiency of infection. Finally, we introduced the concept of effective MOI, a more appropriate variable for microfluidic infections that considers the number of adenoviruses in solution per cell at a certain time.

17.
J Tissue Eng Regen Med ; 5(1): 1-10, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20607681

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin; affected muscles are characterized by continuous bouts of muscle degeneration, eventually leading to the exhaustion of the endogenous satellite cell pool. At present, only palliative treatments are available, although several gene and cell therapy-based approaches are being studied. In this study we proposed to overcome the limitations hampering intramuscular cell injection by using a biomaterial-based strategy. In particular, we used a three-dimensional (3D) collagen porous scaffold to deliver myogenic precursor cells (MPCs) in vivo in the mdx murine model of DMD. MPCs, derived from single fibres of wild-type donors, were expanded in vitro, seeded onto collagen scaffolds and implanted into the tibialis anterior muscles of normal and mdx mice. As a control, cells were delivered via direct intramuscular cell injection in the contralateral muscles. Scaffold-delivered MPCs displayed lower apoptosis and higher proliferation than injected cells; in terms of dystrophin restoration, collagen scaffolds yielded better results than direct injections. Importantly, time-course experiments indicated that the scaffolds acted as a cell reservoir, although cell migration was mostly contained within 400 µm from the scaffold-host tissue interface.


Subject(s)
Muscular Dystrophy, Animal/therapy , Stem Cell Transplantation/methods , Tissue Scaffolds/chemistry , Animals , Cell Death/drug effects , Cell Proliferation/drug effects , Collagen/pharmacology , Dystrophin/metabolism , Immunohistochemistry , Implants, Experimental , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Porosity/drug effects , Time Factors
18.
Integr Biol (Camb) ; 2(4): 193-201, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20473399

ABSTRACT

The in vitro development of human myotubes carrying genetic diseases, such as Duchenne Muscular Dystrophy, will open new perspectives in the identification of innovative therapeutic strategies. Through the proper design of the substrate, we guided the differentiation of human healthy and dystrophic myoblasts into myotubes exhibiting marked functional differentiation and highly defined sarcomeric organization. A thin film of photo cross-linkable elastic poly-acrylamide hydrogel with physiological-like and tunable mechanical properties (elastic moduli, E: 12, 15, 18 and 21 kPa) was used as substrate. The functionalization of its surface by micro-patterning in parallel lanes (75 microm wide, 100 microm spaced) of three adhesion proteins (laminin, fibronectin and matrigel) was meant to maximize human myoblasts fusion. Myotubes formed onto the hydrogel showed a remarkable sarcomere formation, with the highest percentage (60.0% +/- 3.8) of myotubes exhibiting sarcomeric organization, of myosin heavy chain II and alpha-actinin, after 7 days of culture onto an elastic (15 kPa) hydrogel and a matrigel patterning. In addition, healthy myotubes cultured in these conditions showed a significant membrane-localized dystrophin expression. In this study, the culture substrate has been adapted to human myoblasts differentiation, through an easy and rapid methodology, and has led to the development of in vitro human functional skeletal muscle myotubes useful for clinical purposes and in vitro physiological study, where to carry out a broad range of studies on human muscle physiopathology.


Subject(s)
Cell Culture Techniques/methods , Muscle Fibers, Skeletal/pathology , Muscular Dystrophies/pathology , Tissue Engineering/methods , Cell Differentiation , Cells, Cultured , Humans , Reference Values
19.
Exp Cell Res ; 315(20): 3611-9, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19720058

ABSTRACT

Exogenous electric fields have been implied in cardiac differentiation of mouse embryonic stem cells and the generation of reactive oxygen species (ROS). In this work, we explored the effects of electrical field stimulation on ROS generation and cardiogenesis in embryoid bodies (EBs) derived from human embryonic stem cells (hESC, line H13), using a custom-built electrical stimulation bioreactor. Electrical properties of the bioreactor system were characterized by electrochemical impedance spectroscopy (EIS) and analysis of electrical currents. The effects of the electrode material (stainless steel, titanium-nitride-coated titanium, titanium), length of stimulus (1 and 90 s) and age of EBs at the onset of electrical stimulation (4 and 8 days) were investigated with respect to ROS generation. The amplitude of the applied electrical field was 1 V/mm. The highest rate of ROS generation was observed for stainless steel electrodes, for signal duration of 90 s and for 4-day-old EBs. Notably, comparable ROS generation was achieved by incubation of EBs with 1 nM H(2)O(2). Cardiac differentiation in these EBs was evidenced by spontaneous contractions, expression of troponin T and its sarcomeric organization. These results imply that electrical stimulation plays a role in cardiac differentiation of hESCs, through mechanisms associated with the intracellular generation of ROS.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Bioreactors , Cell Culture Techniques , Cell Survival , Electric Stimulation , Electricity , Electrodes , Embryonic Stem Cells/metabolism , Fluoresceins/metabolism , Humans , Hydrogen Peroxide/pharmacology , Microscopy, Fluorescence , Myocardial Contraction , Sarcomeres/metabolism , Stainless Steel/chemistry , Titanium/chemistry , Troponin T/metabolism
20.
Biomed Microdevices ; 11(2): 389-400, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18987976

ABSTRACT

Micropatterning and microfabrication techniques have been widely used to pattern cells on surfaces and to have a deeper insight into many processes in cell biology such as cell adhesion and interactions with the surrounding environment. The aim of this study was the development of an easy and versatile technique for the in vitro production of arrays of functional cardiac and skeletal muscle myofibers using micropatterning techniques on soft substrates. Cardiomyocytes were used for the production of oriented cardiac myofibers whereas mouse muscle satellite cells for that of differentiated parallel myotubes. We performed micro-contact printing of extracellular matrix proteins on soft polyacrylamide-based hydrogels photopolymerized onto functionalized glass slides. Our methods proved to be simple, repeatable and effective in obtaining an extremely selective adhesion of both cardiomyocytes and satellite cells onto patterned soft hydrogel surfaces. Cardiomyocytes resulted in aligned cardiac myofibers able to exhibit a synchronous contractile activity after 2 days of culture. We demonstrated for the first time that murine satellite cells, cultured on a soft hydrogel substrate, fuse and form aligned myotubes after 7 days of culture. Immunofluorescence analyses confirmed correct expression of cell phenotype, differentiation markers and sarcomeric organization. These results were obtained in myotubes derived from satellite cells from both wild type and MDX mice which are research models for the study of muscle dystrophy. These arrays of both cardiac and skeletal muscle myofibers could be used as in vitro models for pharmacological screening tests or biological studies at the single fiber level.


Subject(s)
Cell Culture Techniques/instrumentation , Microarray Analysis/instrumentation , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/physiology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Tissue Engineering/instrumentation , Animals , Animals, Newborn , Cell Culture Techniques/methods , Cells, Cultured , Mice , Microarray Analysis/methods , Rats , Rats, Sprague-Dawley , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...