Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Genom Bioinform ; 5(2): lqad045, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37206627

ABSTRACT

DNA methylation can be detected and measured using sequencing instruments after sodium bisulfite conversion, but experiments can be expensive for large eukaryotic genomes. Sequencing nonuniformity and mapping biases can leave parts of the genome with low or no coverage, thus hampering the ability of obtaining DNA methylation levels for all cytosines. To address these limitations, several computational methods have been proposed that can predict DNA methylation from the DNA sequence around the cytosine or from the methylation level of nearby cytosines. However, most of these methods are entirely focused on CG methylation in humans and other mammals. In this work, we study, for the first time, the problem of predicting cytosine methylation for CG, CHG and CHH contexts on six plant species, either from the DNA primary sequence around the cytosine or from the methylation levels of neighboring cytosines. In this framework, we also study the cross-species prediction problem and the cross-context prediction problem (within the same species). Finally, we show that providing gene and repeat annotations allows existing classifiers to significantly improve their prediction accuracy. We introduce a new classifier called AMPS (annotation-based methylation prediction from sequence) that takes advantage of genomic annotations to achieve higher accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...