Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 2(2): 299-311, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22384408

ABSTRACT

Polyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages. In this article, we show that an osmotolerant yeast species, Pichia sorbitophila, recently isolated in a concentrated sorbitol solution in industry, illustrates this last situation. Its genome is a mosaic of homologous and homeologous chromosomes, or parts thereof, that corresponds to a recently formed hybrid in the process of evolution. The respective parental contributions to this genome were characterized using existing variations in GC content. The genomic changes that occurred during the short period since hybrid formation were identified (e.g., loss of heterozygosity, unilateral loss of rDNA, reciprocal exchange) and distinguished from those undergone by the two parental genomes after separation from their common ancestor (i.e., NUMT (NUclear sequences of MiTochondrial origin) insertions, gene acquisitions, gene location movements, reciprocal translocation). We found that the physiological characteristics of this new yeast species are determined by specific but unequal contributions of its two parents, one of which could be identified as very closely related to an extant Pichia farinosa strain.

2.
Evol Bioinform Online ; 7: 123-33, 2011.
Article in English | MEDLINE | ID: mdl-21918595

ABSTRACT

Comparative sequence analysis is widely used to infer gene function and study genome evolution and requires proper ortholog identification across different genomes. We have developed a program for the Identification of Orthologs in one-to-one relationship by Neighborhood and Similarity (IONS) between closely related species. The algorithm combines two levels of evidence to determine co-ancestrality at the genome scale: sequence similarity and shared neighborhood. The method was initially designed to provide anchor points for syntenic blocks within the Génolevures project concerning nine hemiascomycetous yeasts (about 50,000 genes) and is applicable to different input databases. Comparison based on use of a Rand index shows that the results are highly consistent with the pillars of the Yeast Gene Order Browser, a manually curated database. Compared with SYNERGY, another algorithm reporting homology relationships, our method's main advantages are its automation and the absence of dataset-dependent parameters, facilitating consistent integration of newly released genomes.

3.
OMICS ; 14(6): 701-10, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21114408

ABSTRACT

Frequently, although not exclusively, multidrug resistance (MDR) results from the action of drug-efflux pumps, which are thought to be able to catalyze the active expulsion of several unrelated cytotoxic compounds out of the cell or their intracellular partitioning. The transporters of the major facilitator superfamily (MFS) presumably involved in MDR belong to the 12-spanner drug:H(+) antiporter DHA1 or to the 14- spanner drug:H(+) antiporter DHA2 families. The expression of most Saccharomyces cerevisiae DHA1 family members was found to confer broad chemoprotection. The evolution of the hemiascomycetous DHA1 proteins, belonging to the Génolevures GL3C007 family, was studied using a combined phylogenetic and gene neighborhood approach. The phylogenetic analysis of 189 DHA1 proteins belonging to the genome of 13 hemiascomycetous species identified 20 clusters. Eleven clusters contained no S. cerevisiae members. The phylogenetic clusters were analyzed by the IONS method developed for Identification of Orthologues by Neighborhood and Similarity. This allowed reconstructing the evolutionary history of most DHA1 members within 10 main gene lineages, spanning the whole hemiascomycetes clade, encompassing an evolutionary history of about 350 million years. In addition, five other more species specific lineages, spanning only two hemiascomycetous species, were identified. It is concluded that 57 out of the 143 members of the DHA1 hemiascomycetous members originated from gene duplication events. In half of these duplicates, the two members belong to different phylogenetic clusters, indicating that at least one of them has sufficiently differentiated to provide potential novel functions to this complex family from which most physiological substrates remain unknown.


Subject(s)
Antiporters/classification , Antiporters/metabolism , Evolution, Molecular , Fungal Proteins/classification , Fungal Proteins/metabolism , Yeasts/metabolism , Antifungal Agents/pharmacology , Antiporters/chemistry , Antiporters/genetics , Drug Resistance, Multiple, Fungal/drug effects , Drug Resistance, Multiple, Fungal/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Phylogeny , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Yeasts/drug effects , Yeasts/genetics
4.
BMC Genomics ; 10: 459, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19796374

ABSTRACT

BACKGROUND: Pleiotropic Drug Resistant transporters (PDR) are members of the ATP-Binding Cassette (ABC) subfamily which export antifungals and other xenobiotics in fungi and plants. This subfamily of transmembrane transporters has nine known members in Saccharomyces cerevisiae. We have analyzed the complex evolution of the pleiotropic drug resistance proteins (Pdrp) subfamily where gene duplications and deletions occur independently in individual genomes. This study was carried out on 62 Pdrp from nine hemiascomycetous species, seven of which span 6 of the 14 clades of the Saccharomyces complex while the two others species, Debaryomyces hansenii and Yarrowia lipolytica, are further apart from an evolutive point of view. RESULTS: Combined phylogenetic and neighborhood analyses enabled us to identify five Pdrp clusters in the Saccharomyces complex. Three of them comprise orthologs of the Pdrp sensu stricto, Pdr5p, Pdr10p, Pdr12p, Pdr15p, Snq2p and YNR070wp. The evolutive pathway of the orthologs of Snq2 and YNR070w is particularly complex due to a tandem gene array in Eremothecium gossypii, Kluyveromyces lactis and Saccharomyces (Lachancea) kluyveri. This pathway and different cases of duplications and deletions were clarified by using a neighborhood analysis based on synteny. For the two distant species, Yarrowia lipolytica and Debaryomyces hansenii, no neighborhood evidence is available for these clusters and many homologs of Pdr5 and Pdr15 are phylogenetically assigned to species-based clusters. Two other clusters comprise the orthologs of the sensu lato Pdrp, Aus1p/Pdr11p and YOL075cp respectively. The evolutionary pathway of these clusters is simpler. Nevertheless, orthologs of these genes are missing in some species. CONCLUSION: Numerous duplications were traced among the Hemiascomycetous Pdrp studied. The role of the Whole Genome Duplication (WGD) is sorted out and our analyses confirm the common ancestrality of Pdr5p and Pdr15p. A tandem gene array is observed in Eremothecium gossypii. One of the copies is the ortholog of Snq2 while the other one is lost in the post-WGD species. The neighborhood analysis provides an efficient method to trace the history of genes and disentangle the orthology and paralogy relationships.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Drug Resistance, Multiple, Fungal/genetics , Fungal Proteins/genetics , Phylogeny , Saccharomycetales/genetics , DNA, Fungal/genetics , Evolution, Molecular , Genome, Fungal , Sequence Alignment , Sequence Analysis, DNA
5.
Genome Res ; 19(10): 1696-709, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19525356

ABSTRACT

Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified.


Subject(s)
Genome, Fungal , Genomics/methods , Saccharomycetales/genetics , DNA Transposable Elements/genetics , DNA Transposable Elements/physiology , Eremothecium/genetics , Gene Duplication , Genes, Fungal/genetics , Inteins/genetics , Kluyveromyces/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Phylogeny , RNA, Untranslated/genetics , Saccharomyces/genetics , Spliceosomes/metabolism , Zygosaccharomyces/genetics
6.
FEMS Yeast Res ; 9(4): 526-34, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19459981

ABSTRACT

The sugar porter family in yeasts encompasses a wide variety of transporters including the hexose transporters and glucose sensors. We analysed a total of 75 members from both groups in nine hemiascomycetous species, with complete and well-annotated genomes: Saccharomyces cerevisiae, Candida glabrata, Zygosaccharomyces rouxii, Kluyveromyces thermotolerans, Saccharomyces kluyverii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii and Yarrowia lipolytica. We present a model for the evolution of the hexose transporters and glucose sensors, supported by two types of complementary evidences: phylogeny and neighbourhood analysis. Five lineages of evolution were identified and discussed according to different mechanisms of gene evolution: lineage A for HXT1, HXT3, HXT4, HXT5, HXT6 and HXT7; lineage B for HXT2 and HXT10; lineage C for HXT8; lineage D for HXT14; and lineage E for SNF3 and RGT2.


Subject(s)
Ascomycota/genetics , Monosaccharide Transport Proteins/genetics , Phylogeny , Receptors, Cell Surface/genetics , Yeasts/genetics , Cluster Analysis , Evolution, Molecular , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...