Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ground Water ; 51(4): 562-74, 2013.
Article in English | MEDLINE | ID: mdl-23025712

ABSTRACT

Following passage of the New Jersey Private Well Testing Act, 50,800 domestic wells were tested between 2002 and 2007 for the presence of total coliform (TC) bacteria. Wells containing TC bacteria were further tested for either fecal coliform or Escherichia coli (FC/E. coli) bacteria. Analysis of the data, generated by 39 laboratories, revealed that the rate of coliform detections in groundwater (GW) was influenced by the laboratory and the method used, and also by geology. Based on one sample per well, TC and FC/E. coli were detected in wells located in bedrock 3 and 3.7 times more frequently, respectively, than in wells located in the unconsolidated strata of the Coastal Plain. In bedrock, detection rates were higher in sedimentary rock than in igneous or metamorphic rock. Ice-age glaciers also influenced detection rates, most likely by removing material in some areas and depositing thick layers of unconsolidated material in other areas. In bedrock, coliform bacteria were detected more often in wells with a pH of 3 to 6 than in wells with a pH of 7 to 10 whereas the reverse was true in the Coastal Plain. TC and FC/E. coli bacteria were detected in 33 and 9.5%, respectively, of sedimentary rock wells with pH 3 to 6. Conversely, for Coastal Plain wells with pH 3 to 6, detection rates were 4.4% for TC and 0.6% for FC/E. coli.


Subject(s)
Enterobacteriaceae/isolation & purification , Environmental Monitoring/methods , Geologic Sediments/chemistry , Water Microbiology , Water Wells/microbiology , New Jersey , Ownership
2.
Environ Sci Technol ; 42(5): 1423-9, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18441783

ABSTRACT

Analysis of arsenic concentrations in New Jersey well water from the Newark Basin showed up to 15% of the wells exceed 10 microg L(-1), with a maximum of 215 microg L(-1). In some geologic settings in the basin, this mobile arsenic could be from the weathering of pyrite (FeS2) found in black shale that contains up to 4% arsenic by weight. We hypothesized that under oxic conditions at circumneutral pH, the microbially mediated oxidation of sulfide in the pyrite lattice would lead to the release of pyrite-bound arsenic. Moreover, the oxidation of aqueous As(III) to As(V) by aerobic microorganisms could further enhance arsenic mobilization from the solid phase. Enrichment cultures under aerobic, As(III)-oxidizing conditions were established under circumneutral pH with weathered black shale from the Newark Basin as the inoculum source. Strain WAO, an autotrophic inorganic-sulfur and As(III)-oxidizer, was isolated and phylogenetically and physiologically characterized. Arsenic mobilization studies from arsenopyrite (FeAsS) mineral, conducted with strain WAO at circumneutral pH, showed microbially enhanced mobilization of arsenic and complete oxidation of released arsenic and sulfur to stoichiometric amounts of arsenate and sulfate. In addition, WAO preferentially colonized pyrite on the surface of arsenic-bearing, black shale thick sections. These findings support the hypothesis that microorganisms can directly mobilize and transform arsenic bound in mineral form at circumneutral pH and suggest that the microbial mobilization of arsenic into groundwater may be important in other arsenic-impacted aquifers.


Subject(s)
Arsenic/metabolism , Minerals/metabolism , Thiobacillus/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism , Biotransformation , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Ribulose-Bisphosphate Carboxylase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...