ABSTRACT
The potential energy surfaces of the Na(Si(5-n)(BH)(n))(-) and Si(5-n)(BH)(n)(2-) (n = 0-5) systems have been explored in detail. We established that all the global minimum structures of anionic and dianionic systems can be obtained by substitution of one or more silicon atoms of the global minima of NaSi(5)(-) and Si(5)(2-) for B-H units. The conservation of the overall structure upon isoelectronic substitution was shown to be due to the preservation of the chemical bonding pattern. Theoretical VDEs were calculated for all of the sodiated Na(Si(5-n)(BH)(n))(-) (n = 0-5) systems to facilitate their experimental detection.
ABSTRACT
We describe and explain the fluxionality of B(13)(+). The chemical bonding analysis shows that the inner triangle of B(13)(+) is bound to the peripheral ring by delocalized bonds only, allowing a quasi-free rotation of the inner ring.