Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(1): e0323921, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35038916

ABSTRACT

Phosphoinositide lipids play key roles in a variety of processes in eukaryotic cells, but our understanding of their functions in the malaria parasite Plasmodium falciparum is still very much limited. To gain a deeper comprehension of the roles of phosphoinositides in this important pathogen, we attempted gene inactivation for 24 putative effectors of phosphoinositide metabolism. Our results reveal that 79% of the candidates are refractory to genetic deletion and are therefore potentially essential for parasite growth. Inactivation of the gene coding for a Plasmodium-specific putative phosphoinositide-binding protein, which we named PfPX1, results in a severe growth defect. We show that PfPX1 likely binds phosphatidylinositol-3-phosphate and that it localizes to the membrane of the digestive vacuole of the parasite and to vesicles filled with host cell cytosol and labeled with endocytic markers. Critically, we provide evidence that it is important in the trafficking pathway of hemoglobin from the host erythrocyte to the digestive vacuole. Finally, inactivation of PfPX1 renders parasites resistant to artemisinin, the frontline antimalarial drug. Globally, the minimal redundancy in the putative phosphoinositide proteins uncovered in our work supports that targeting this pathway has potential for antimalarial drug development. Moreover, our identification of a phosphoinositide-binding protein critical for the trafficking of hemoglobin provides key insight into this essential process. IMPORTANCE Malaria represents an enormous burden for a significant proportion of humanity, and the lack of vaccines and problems with drug resistance to all antimalarials demonstrate the need to develop new therapeutics. Inhibitors of phosphoinositide metabolism are currently being developed as antimalarials but our understanding of this biological pathway is incomplete. The malaria parasite lives inside human red blood cells where it imports hemoglobin to cover some of its nutritional needs. In this work, we have identified a phosphoinositide-binding protein that is important for the transport of hemoglobin in the parasite. Inactivation of this protein decreases the ability of the parasite to proliferate. Our results have therefore identified a potential new target for antimalarial development.


Subject(s)
Antimalarials , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Animals , Humans , Antimalarials/pharmacology , Carrier Proteins/metabolism , Erythrocytes/parasitology , Hemoglobins/metabolism , Malaria , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Parasites/metabolism , Phosphatidylinositols/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
2.
EMBO Rep ; 20(6)2019 06.
Article in English | MEDLINE | ID: mdl-31097469

ABSTRACT

Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is an essential step in the development of the disease. Consequently, the molecular players involved in host cell invasion represent important targets for inhibitor design and vaccine development. The process of merozoite invasion is a succession of steps underlined by the sequential secretion of the organelles of the apical complex. However, little is known with regard to how their contents are exocytosed. Here, we identify a phosphoinositide-binding protein conserved in apicomplexan parasites and show that it is important for the attachment and subsequent invasion of the erythrocyte by the merozoite. Critically, removing the protein from its site of action by knock sideways preferentially prevents the secretion of certain types of micronemes. Our results therefore provide evidence for a role of phosphoinositide lipids in the malaria invasion process and provide further insight into the secretion of microneme organelle populations, which is potentially applicable to diverse apicomplexan parasites.


Subject(s)
Exocytosis , Plasmodium falciparum/physiology , Protozoan Proteins/metabolism , Amino Acid Sequence , Conserved Sequence , Erythrocytes/parasitology , Humans , Life Cycle Stages , Phosphatidylinositols/metabolism , Pleckstrin Homology Domains , Protein Binding , Protein Interaction Domains and Motifs , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...