Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Eye Res ; 47(2): 277-286, 2022 02.
Article in English | MEDLINE | ID: mdl-34612091

ABSTRACT

PURPOSE: The formation of fibrovascular membranes (FVMs) is a serious sight-threatening complication of proliferative diabetic retinopathy (PDR) that may result in retinal detachment and eventual blindness. During the formation of these membranes, neurite/process outgrowth occurs in retinal neurons and glial cells, which may both serve as a scaffold and have guiding or regulatory roles. To further understand this process, we investigated whether previously identified candidate proteins, from vitreous of PDR patients with FVMs, could induce neurite outgrowth in an experimental setting. MATERIALS AND METHODS: Retinal explants of C57BL6/N mouse pups on postnatal day 3 (P3) were cultured in poly-L-lysine- and laminin-coated dishes. Outgrowth stimulation experiments were performed with the addition of potential inducers of neurite outgrowth. Automated analysis of neurite outgrowth was performed by measuring ß-tubulin-immunopositive neurites using Image J. Expression of PDGF receptors was quantified by RT-PCR in FVMs of PDR patients. RESULTS: Platelet-derived growth factor (PDGF) induced neurite outgrowth in a concentration-dependent manner, whilst neuregulin 1 (NRG1) and connective tissue growth factor (CTGF) did not. When comparing three different PDGF dimers, treatment with PDGF-AB resulted in the highest neurite induction, followed by PDGF-AA and -BB. In addition, incubation of retinal explants with vitreous from PDR patients resulted in a significant induction of neurite outgrowth as compared to non-diabetic control vitreous from patients with macular holes, which could be prevented by addition of CP673451, a potent PDGF receptor (PDGFR) inhibitor. Abundant expression of PDGF receptors was detected in FVMs. CONCLUSION: Our findings suggest that PDGF may be involved in the retinal neurite outgrowth, which is associated with the formation of FVMs in PDR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Animals , Diabetic Retinopathy/metabolism , Humans , Mice , Neuronal Outgrowth , Platelet-Derived Growth Factor/pharmacology , Receptors, Platelet-Derived Growth Factor/metabolism , Vitreous Body/metabolism
2.
Exp Eye Res ; 197: 108108, 2020 08.
Article in English | MEDLINE | ID: mdl-32590005

ABSTRACT

Although anti-VEGF therapies have radically changed clinical practice, there is still an urgent demand for novel, integrative approaches for sight-threatening retinal vascular diseases. As we hypothesize that protein tyrosine kinases are key signaling mediators in retinal vascular disease, we performed a comprehensive activity-based tyrosine kinome profiling on retinal tissue of 12-week-old Akimba mice, a translational model displaying hallmarks of early and advanced diabetic retinopathy. Western blotting was used to confirm retinal tyrosine kinase activity in Akimba mice. HUVEC tube formation and murine organotypic choroidal sprouting assays were applied to compare tyrosine kinase inhibitors with different specificity profiles. HUVEC toxicity and proliferation were evaluated using the CellTox™ Green Cytotoxicity and PrestoBlue™ Assays. Our results indicate a shift of the Akimba retinal tyrosine kinome towards a hyperactive state. Functional network analysis of significantly hyperphosphorylated peptides and upstream kinase prediction revealed a central role for Src-FAK family kinases. Western blotting confirmed hyperactivity of this signaling node in the retina of Akimba mice. We demonstrated that not only Src but also FAK family kinase inhibitors with different selectivity profiles were able to suppress angiogenesis in vitro and ex vivo. In the latter model, the novel selective Src family kinase inhibitor eCF506 was able to achieve potent reduction of angiogenesis, comparable to the less specific inhibitor Dasatinib. None of the tested compounds demonstrated acute endothelial cell toxicity. Overall, the collected findings provide the first comprehensive overview of retinal tyrosine kinome changes in the Akimba model of diabetic retinopathy and for the first time highlight Src family kinase inhibition using highly specific inhibitors as an attractive therapeutic intervention for retinal vascular pathology.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy/metabolism , Tyrosine/metabolism , src-Family Kinases/antagonists & inhibitors , Animals , Blotting, Western , Diabetic Retinopathy/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Male , Mice , Mice, Inbred C57BL , Signal Transduction , src-Family Kinases/metabolism
3.
Endocrinology ; 160(11): 2759-2772, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31504428

ABSTRACT

Thyroid hormones (THs) are crucial regulators of glucose metabolism and insulin sensitivity. Moreover, inactivating mutations in type 2 deiodinase (DIO2), the major TH-activating enzyme, have been associated with type 2 diabetes mellitus in both humans and mice. We studied the link between Dio2 deficiency and glucose homeostasis in fasted males of two different Dio2 knockout (KO) zebrafish lines. Young adult Dio2KO zebrafish (6 to 9 months) were hyperglycemic. Both insulin and glucagon expression were increased, whereas ß and α cell numbers in the main pancreatic islet were similar to those in wild-types. Insulin receptor expression in skeletal muscle was decreased at 6 months, accompanied by a strong downregulation of hexokinase and pyruvate kinase expression. Blood glucose levels in Dio2KO zebrafish, however, normalized around 1 year of age. Older mutants (18 to 24 months) were normoglycemic, and increased insulin and glucagon expression was accompanied by a prominent increase in pancreatic islet size and ß and α cell numbers. Older Dio2KO zebrafish also showed strongly decreased expression of glucagon receptors in the gastrointestinal system as well as decreased expression of glucose transporters GLUT2 and GLUT12, glucose-6-phosphatase, and glycogen synthase 2. This study shows that Dio2KO zebrafish suffer from transient hyperglycemia, which is counteracted with increasing age by a prominent hyperplasia of the endocrine pancreas together with decreases in hepatic glucagon sensitivity and intestinal glucose uptake. Further research on the mechanisms allowing compensation in older Dio2KO zebrafish may help to identify new therapeutic targets for (TH deficiency-related) hyperglycemia.


Subject(s)
Glucose/metabolism , Iodide Peroxidase/deficiency , Aging/metabolism , Animals , Animals, Genetically Modified , Glucose Transport Proteins, Facilitative/metabolism , Homeostasis , Hyperglycemia/genetics , Iodide Peroxidase/genetics , Islets of Langerhans/cytology , Islets of Langerhans/physiology , Male , Proglucagon/metabolism , Proinsulin/metabolism , Receptor, Insulin/metabolism , Receptors, Glucagon/metabolism , Zebrafish , Iodothyronine Deiodinase Type II
4.
Invest Ophthalmol Vis Sci ; 60(2): 807-822, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30811545

ABSTRACT

Purpose: The goal of this study was to perform an extensive temporal characterization of the early pathologic processes in the streptozotocin (STZ)-induced diabetic retinopathy (DR) mouse model, beyond the vascular phenotype, and to investigate the potential of clinically relevant compounds in attenuating these processes. Methods: Visual acuity and contrast sensitivity (CS) were studied in the mouse STZ model until 24 weeks postdiabetes onset. ERG, spectral domain optical coherence tomography (SD-OCT), leukostasis, and immunohistochemistry were applied to investigate neurodegeneration, inflammation, and gliosis during early-, mid- and late-phase diabetes. Aflibercept or triamcinolone acetonide (TAAC) was administered to investigate their efficacy on the aforementioned processes. Results: Visual acuity and CS loss started at 4 and 18 weeks postdiabetes onset, respectively, and progressively declined over time. ERG amplitudes were diminished and OP latencies increased after 6 weeks, whereas SD-OCT revealed retinal thinning from 4 weeks postdiabetes. Immunohistochemical analyses linked these findings to retinal ganglion and cholinergic amacrine cell loss at 4 and 8 weeks postdiabetes onset, respectively, which was further decreased after aflibercept administration. The number of adherent leukocytes was augmented after 2 weeks, whereas increased micro- and macroglia reactivity was present from 4 weeks postdiabetes. Aflibercept or TAAC showed improved efficacy on inflammation and gliosis. Conclusions: STZ-induced diabetic mice developed early pathologic DR hallmarks, from which inflammation seemed the initial trigger, leading to further development of functional and morphologic retinal changes. These findings indicate that the mouse STZ model is suitable to study novel integrative non-vascular therapies to treat early DR.


Subject(s)
Contrast Sensitivity/physiology , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/pathology , Disease Models, Animal , Retina/physiopathology , Visual Acuity/physiology , Angiogenesis Inhibitors/therapeutic use , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetic Retinopathy/drug therapy , Electroretinography , Follow-Up Studies , Glucocorticoids/therapeutic use , Immunohistochemistry , Leukostasis , Male , Mice , Mice, Inbred C57BL , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Streptozocin , Tomography, Optical Coherence , Treatment Outcome , Triamcinolone Acetonide/therapeutic use
5.
Sci Rep ; 8(1): 11922, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30093686

ABSTRACT

Diabetic retinopathy (DR) is one of the major complications of diabetes, which eventually leads to blindness. Up to date, no animal model has yet shown all the co-morbidities often observed in DR patients. Here, we investigated whether obese 42 weeks old ZSF1 rat, which spontaneously develops diabetes, hypertension and obesity, would be a suitable model to study DR. Although arteriolar tortuosity increased in retinas from obese as compared to lean (hypertensive only) ZSF1 rats, vascular density pericyte coverage, microglia number, vascular morphology and retinal thickness were not affected by diabetes. These results show that, despite high glucose levels, obese ZSF1 rats did not develop DR. Such observations prompted us to investigate whether the expression of genes, possibly able to contain DR development, was affected. Accordingly, mRNA sequencing analysis showed that genes (i.e. Npy and crystallins), known to have a protective role, were upregulated in retinas from obese ZSF1 rats. Lack of retina damage, despite obesity, hypertension and diabetes, makes the 42 weeks of age ZSF1 rats a suitable animal model to identify genes with a protective function in DR. Further characterisation of the identified genes and downstream pathways could provide more therapeutic targets for the treat DR.


Subject(s)
Diabetic Nephropathies/genetics , Diabetic Retinopathy/genetics , Disease Models, Animal , Gene Expression Profiling/methods , Hypertension/genetics , Obesity/genetics , Animals , Blood Glucose/metabolism , Crystallins/genetics , Crystallins/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Diabetic Retinopathy/metabolism , Hypertension/metabolism , Male , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Obesity/metabolism , Rats , Retina/metabolism , Retina/pathology
6.
Curr Eye Res ; 42(2): 260-272, 2017 02.
Article in English | MEDLINE | ID: mdl-27399806

ABSTRACT

PURPOSE: Diabetic retinopathy (DR) is characterized by an early stage of inflammation and vessel leakage, and an advanced vasoproliferative stage. Also, neurodegeneration might play an important role in disease pathogenesis. The aim of this study was to investigate the effect of the Rho kinase (ROCK) inhibitor, AMA0428, on these processes. METHODS: The response to ROCK inhibition by AMA0428 (1 µg) was studied in vivo using the murine model for streptozotocin (STZ)-induced diabetes, focusing on early non-proliferative DR features and the oxygen-induced retinopathy (OIR) model to investigate proliferative DR. Intravitreal (IVT) administration of AMA0428 was compared with murine anti-VEGF-R2 antibody (DC101, 6.2 µg) and placebo (H2O/PEG; 1C8). Outcome was assessed by analyzing leukostasis using fluorescein isothiocyanate coupled concanavalin A (FITC-ConA) and vessel leakage (bovine serum albumin conjugated with fluorescein isothiocyanate; FITC-BSA)/neovascularization and neurodegeneration by immunohistological approaches (hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL), Brn3a). ELISA and Western blotting were employed to unravel the consequences of ROCK inhibition (1 µM AMA0428) on myosin phosphatase target protein (MYPT)-1 phosphorylation, endothelial nitric oxide synthase (eNOS) phosphorylation, and vascular endothelial growth factor (VEGF) levels in retinas of diabetic mice, on NF-κß activity and ICAM-1 expression in endothelial cells (ECs). RESULTS: In vivo, AMA0428 significantly reduced vessel leakage and neovascularization, respectively, in the STZ and OIR model, comparable to DC101 therapy. Additionally, the ROCK inhibitor decreased neurodegeneration in both models and inhibited leukostasis by 30% (p < 0.05) in the STZ model (p < 0.05), while DC101 had no positive effect on the outcome of these latter processes. ROCK activity was upregulated in the diabetic retina and AMA0428 administration resulted in decreased phospho-MYPT-1, enhanced phospho-eNOS, and reduced VEGF levels. In vitro, AMA0428 interfered with NF-κß activity, thereby inhibiting ICAM-1 expression in ECs. CONCLUSIONS: Targeting ROCK with AMA0428 effectively attenuated outcome in an early DR model (STZ) and a late vasoproliferative retinopathy model (OIR). These findings make AMA0428 a promising candidate with an additional anti-inflammatory and neuroprotective benefit for DR patients, as compared with anti-VEGF treatment.


Subject(s)
Diabetic Retinopathy/drug therapy , Enzyme Inhibitors/pharmacology , Retina/pathology , rho-Associated Kinases/antagonists & inhibitors , Animals , Blotting, Western , Cells, Cultured , Diabetes Mellitus, Experimental , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Disease Progression , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Male , Mice , NF-kappa B/metabolism , Vascular Endothelial Growth Factor A/metabolism
7.
Int J Mol Sci ; 17(11)2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27809288

ABSTRACT

Matrix metalloproteinase-3 (MMP-3) is known to mediate neuroinflammatory processes by activating microglia, disrupting blood-central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE) and the blood-retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU) model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1), interleukin 6 (Il6), cytokine-inducible nitrogen oxide synthase (Nos2) and tumor necrosis factor α (Tnfα), which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP)-1 and (C-X-C motif) ligand 1 (CXCL1). These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation.


Subject(s)
Chemokine CCL2/genetics , Chemokine CXCL1/genetics , Gene Expression Regulation , Matrix Metalloproteinase 3/genetics , Uveitis/genetics , Acute Disease , Animals , Blotting, Western , Cell Adhesion/genetics , Chemokine CCL2/metabolism , Chemokine CXCL1/metabolism , Gene Expression Profiling/methods , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Leukocytes/metabolism , Lipopolysaccharides , Matrix Metalloproteinase 3/deficiency , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Retina/metabolism , Retina/pathology , Retinal Pigment Epithelium/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tomography, Optical Coherence , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Uveitis/chemically induced , Uveitis/metabolism , Vitreous Body/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...