Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(26): e2309291, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704699

ABSTRACT

Oxides are of interest for thermoelectrics due to their high thermal stability, chemical inertness, low cost, and eco-friendly constituting elements. Here, adopting a unique synthesis route via chemical co-precipitation at strongly alkaline conditions, one of the highest thermoelectric performances for ZnO ceramics ( P F max = $PF_{\text{max}} =$  21.5 µW cm-1 K-2 and z T max = $zT_{\text{max}} =$  0.5 at 1100 K in Zn 0.96 Al 0.04 O ${\rm Zn}_{0.96} {\rm Al}_{0.04}{\rm O}$ ) is achieved. These results are linked to a distinct modification of the electronic structure: charge carriers become trapped at the edge of the conduction band due to Anderson localization, evidenced by an anomalously low carrier mobility, and characteristic temperature and doping dependencies of charge transport. The bi-dimensional optimization of doping and carrier localization enable a simultaneous improvement of the Seebeck coefficient and electrical conductivity, opening a novel pathway to advance ZnO thermoelectrics.

2.
ACS Appl Mater Interfaces ; 15(15): 19220-19229, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37014987

ABSTRACT

Bismuth telluride-based alloys possess the highest efficiencies for the low-temperature-range (<500 K) applications among thermoelectric materials. Despite significant advances in the efficiency of p-type Bi2Te3-based materials through engineering the electronic band structure by convergence of multiple bands, the n-type pair still suffers from poor efficiency due to a lower number of electron pockets near the conduction band edge than the valence band. To overcome the persistent low efficiency of n-type Bi2Te3-based materials, we have fabricated multiphase pseudobinary Bi2Te3-Bi2S3 compounds to take advantages of phonon scattering and energy filtering at interfaces, enhancing the efficiency of these materials. The energy barrier generated at the interface of the secondary phase of Bi14Te13S8 in the Bi2Te3 matrix resulted in a higher Seebeck coefficient and consequently a higher power factor in multiphase compounds than the single-phase alloys. This effect was combined with low thermal conductivity achieved through phonon scattering at the interfaces of finely structured multiphase compounds and resulted in a relatively high thermoelectric figure of merit of ∼0.7 over the 300-550 K temperature range for the multiphase sample of n-type Bi2Te2.75S0.25, double the efficiency of single-phase Bi2Te3. Our results inform an alternative alloy design to enhance the performance of thermoelectric materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...