Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(33): 8123-8128, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28731352

ABSTRACT

Utilization of the Marangoni effect in a liquid metal is investigated, focusing on initiating instabilities to direct material assembly via the Rayleigh-Plateau instability. Thin (2 nm) copper (Cu) films are lithographically patterned onto thick (12 nm) nickel (Ni) strips to induce a surface energy gradient at the maximum wavelength of the filament instability predicted by Rayleigh-Plateau instability analysis. The pattern is irradiated with an 18 ns pulsed laser such that the pattern melts and the resultant Ni-Cu surface tension gradient induces Marangoni flows due to the difference in surface energies. The experimental results, supported by extensive direct numerical simulations, demonstrate that the Marangoni flow exceeds the capillary flow induced by the initial geometry, guiding instabilities such that final nanoparticle location is directed toward the regions of higher surface energy (Ni regions). Our work shows a route for manipulation, by means of the Marangoni effect, to direct the evolution of the surface instabilities and the resulting pattern formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...