Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 41(7): 1313-6, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27192224

ABSTRACT

By applying the proposed high-dynamic-range (HDR) technique based on exposure bracketing, we demonstrate a meaningful reduction in the spatial noise in image frames acquired with a CCD camera so as to improve the fringe contrast in full-field optical coherence tomography (FF-OCT). This new signal processing method thus allows improved probing within transparent or semitransparent samples. The proposed method is demonstrated on 3 µm thick transparent polymer films of Mylar, which, due to their transparency, produce low contrast fringe patterns in white-light interference microscopy. High-resolution tomographic analysis is performed using the technique. After performing appropriate signal processing, resulting XZ sections are observed. Submicrometer-sized defects can be lost in the noise that is present in the CCD images. With the proposed method, we show that by increasing the signal-to-noise ratio of the images, submicrometer-sized defect structures can thus be detected.

2.
Appl Opt ; 53(31): 7202-7, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25402877

ABSTRACT

Nanosecond near-IR lasers are commonly used for industrial laser processing. In this paper, we demonstrate that a 70 µm diameter beam generated from a 5 W, 28 ns, near-IR (1064 nm) Nd:YAG laser can etch a silicon wafer with a lateral feature size as small as 1.3 µm. Surprisingly with this laser, microetching can also be achieved on glass, despite the low absorption of this material at this wavelength. This breakthrough is carried out in ambient air by using glass microspheres with diameters between 4 and 40 µm that generate a concentrated beam at their vicinity, a phenomenon referred to as a photonic jet. The roles of parameters such as laser fluence, pulse number, microsphere diameter, and distance between the microsphere and the sample are discussed. A good correlation has been observed between the computed photonic jet intensity distribution and the etched marks' geometry.

3.
Appl Opt ; 53(10): 2196-205, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24787181

ABSTRACT

We present a scalar model to overcome the computation time and sampling interval limitations of the traditional Rayleigh-Sommerfeld (RS) formula and angular spectrum method in computing wide-angle diffraction in the far-field. Numerical and experimental results show that our proposed method based on an accurate nonparaxial diffraction step onto a hemisphere and a projection onto a plane accurately predicts the observed nonparaxial far-field diffraction pattern, while its calculation time is much lower than the more rigorous RS integral. The results enable a fast and efficient way to compute far-field nonparaxial diffraction when the conventional Fraunhofer pattern fails to predict correctly.

4.
J Opt Soc Am A Opt Image Sci Vis ; 29(11): 2386-93, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23201801

ABSTRACT

A step index multimode optical fiber with a perturbation on a micrometer scale, inducing a periodic deformation of the fiber section along its propagation axis, is theoretically investigated. The studied microperturbation is mechanically achieved using two microstructured jaws squeezing the straight fiber. As opposed to optical fiber microbend sensors, the optical axis of the proposed transducer is not bended; only the optical fiber section is deformed. Further, the strain applied on the fiber produces a periodical elliptical modification of the core and a modulation of the index of refraction. As a consequence of the micrometer scale perturbation period, the resulting mode coupling occurs directly between guided and radiated modes. To simulate the transmission induced by these kinds of perturbations, simplified models considering only total mode couplings are often used. In order to investigate the range of validity of this approximation, results are compared to the electromagnetic mode couplings rigorously computed for the first time, to our knowledge, with a large multimode fiber (more than 6000 linear polarized modes) using the Marcuse model. In addition, in order to have a more complete modeling of the proposed transducer, the anisotropic elasto-optic effects in the stressed multimode fiber are considered. In this way, the transmission of the microperturbed optical fiber transmission and, therefore, the behavior of the transducer are physically explained and its applications as a future stretching sensor are discussed.

5.
Opt Lett ; 36(7): 1194-6, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21479027

ABSTRACT

This Letter introduces and discusses a difference in the behavior of a cylindrical diffractive lens encoded with subwavelength structures illuminated with monochromatic coherent light in the cases of TE and TM polarization. The effective medium theory is used to model with new binary phase function the diffractive lens. A new algorithm combines the finite-difference time domain for the propagation in the near field and the radiation spectrum method for the propagation in the far field. We observe the existence in the TM polarization of a second spot at half the distance of the focal length not predictable by scalar theory.

6.
Opt Express ; 18(17): 17974-82, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20721184

ABSTRACT

A new rigorous vector-based design and analysis approach of diffractive lenses is presented. It combines the use of two methods: the Finite-Difference Time-Domain for the study in the near field, and the Radiation Spectrum Method for the propagation in the far field. This approach is proposed to design and optimize effective medium cylindrical diffractive lenses for high efficiency structured light illumination systems. These lenses are realised with binary subwavelength features that cannot be designed using the standard scalar theory. Furthermore, because of their finite and high frequencies characteristics, such devices prevent the use of coupled wave theory. The proposed approach is presented to determine the angular tolerance in the cases of binary subwavelength cylindrical lenses by calculating the diffraction efficiency as a function of the incidence angle.


Subject(s)
Algorithms , Finite Element Analysis , Lenses , Microscopy/instrumentation , Models, Theoretical , Electronics/instrumentation , Electronics/methods , Light , Microscopy/methods , Radiation , Scattering, Radiation
7.
Appl Opt ; 49(18): 3601-6, 2010 Jun 20.
Article in English | MEDLINE | ID: mdl-20563215

ABSTRACT

In this paper, we report a new method of thermal characterization of optical fibers using wavelength-sweeping interferometry and discuss its advantages compared to other techniques. The setup consists of two temperature-stabilized interferometers, a reference Michelson and a Mach-Zehnder, containing the fiber under test. The wavelength sweep is produced by an infrared tunable laser diode. We obtained the global phase shift coefficients of a large effective area fiber and gold-coated fiber optics with a 10(-7) accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL