Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Dev Disabil ; 150: 104751, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795554

ABSTRACT

BACKGROUND: Functional connectivity is scarcely studied in Rett syndrome (RTT). Explorations revealed associations between RTT's clinical, genetic profiles, and coherence measures, highlighting an unexplored frontier in understanding RTT's neural mechanisms and cognitive processes. AIMS: To evaluate the effects of diverse cognitive stimulations-learning-focused versus gaming-oriented-on electroencephalography brain connectivity in RTT. The comparison with resting states aimed to uncover potential biomarkers and insights into the neural processes associated with RTT. METHODS AND PROCEDURES: The study included 15 girls diagnosed with RTT. Throughout sessions lasting about 25 min, participants alternated between active and passive tasks, using an eyetracker device while their brain activity was recorded with a 20-channel EEG. Results revealed significant alterations during cognitive tasks, notably in delta, alpha and beta bands. Both tasks induced spectral pattern changes and connectivity shifts, hinting at enhanced neural processing. Hemispheric asymmetry decreased during tasks, suggesting more balanced neural processing. Linear and nonlinear connectivity alterations were observed in active tasks compared to resting state, while passive tasks showed no significant changes. CONCLUSIONS AND IMPLICATIONS: Results underscores the potential of cognitive stimulation for heightened cognitive abilities, promoting enhanced brain connectivity and information flow in Rett syndrome. These findings offer valuable markers for evaluating cognitive interventions and suggest gaming-related activities as effective tools for improving learning outcomes.


Subject(s)
Cognition , Electroencephalography , Rett Syndrome , Video Games , Humans , Rett Syndrome/physiopathology , Female , Child , Cognition/physiology , Adolescent , Brain/physiopathology , Learning/physiology , Young Adult
2.
Am J Physiol Heart Circ Physiol ; 320(4): H1235-H1260, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33416450

ABSTRACT

The use of physiological models in medicine allows the evaluation of new hypotheses, development of diagnosis and clinical treatment applications, and development of training and medical education tools, as well as medical device design. Although several mathematical models of physiological systems have been presented in the literature, few of them are able to predict the human cardiorespiratory response under physical exercise stimulus adequately. This paper aims to present the building and comparison of an integrated cardiorespiratory model focused on the prediction of the healthy human response under rest and aerobic exercise. The model comprises cardiovascular circulation, respiratory mechanics, and gas exchange system, as well as cardiovascular and respiratory controllers. Every system is based on previously reported physiological models and incorporates reported mechanisms related to the aerobic exercise dynamics. Experimental data of 30 healthy male volunteers undergoing a cardiopulmonary exercise test and simulated data from two of the most current and complete cardiorespiratory models were used to evaluate the performance of the presented model. Experimental design, processing, and exploratory analysis are described in detail. The simulation results were compared against the experimental data in steady state and in transient regime. The predictions of the proposed model closely mimic the experimental data, showing in overall the lowest prediction error (10.35%), the lowest settling times for cardiovascular and respiratory variables, and in general the fastest and similar responses in transient regime. These results suggest that the proposed model is suitable to predict the cardiorespiratory response of healthy adult humans under rest and aerobic exercise conditions.NEW & NOTEWORTHY This paper presents a new cardiorespiratory model focused on the prediction of the healthy human response under rest and aerobic dynamic exercise conditions. Simulation results of cardiorespiratory variables are compared against experimental data and two of the most current and complete cardiorespiratory models.


Subject(s)
Blood Vessels/physiology , Computer Simulation , Exercise , Heart/physiology , Hemodynamics , Lung/physiology , Models, Cardiovascular , Respiration , Adaptation, Physiological , Adolescent , Adult , Cardiorespiratory Fitness , Humans , Male , Middle Aged , Rest , Time Factors , Young Adult
3.
Sci Data ; 7(1): 397, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199696

ABSTRACT

This paper presents a dataset of high-density surface EMG signals (HD-sEMG) designed to study patterns of sEMG spatial distribution over upper limb muscles during voluntary isometric contractions. Twelve healthy subjects performed four different isometric tasks at different effort levels associated with movements of the forearm. Three 2-D electrode arrays were used for recording the myoelectric activity from five upper limb muscles: biceps brachii, triceps brachii, anconeus, brachioradialis, and pronator teres. Technical validation comprised a signals quality assessment from outlier detection algorithms based on supervised and non-supervised classification methods. About 6% of the total number of signals were identified as "bad" channels demonstrating the high quality of the recordings. In addition, spatial and intensity features of HD-sEMG maps for identification of effort type and level, have been formulated in the framework of this database, demonstrating better performance than the traditional time-domain features. The presented database can be used for pattern recognition and MUAP identification among other uses.


Subject(s)
Elbow/physiology , Electromyography , Isometric Contraction , Muscle, Skeletal/physiology , Algorithms , Forearm/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...