Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cancers (Basel) ; 14(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35406446

ABSTRACT

Clinical and molecular heterogeneity are hallmarks of chronic lymphocytic leukemia (CLL), a neoplasm characterized by accumulation of mature and clonal long-lived CD5 + B-lymphocytes. Mutational status of the IgHV gene of leukemic clones is a powerful prognostic tool in CLL, and it is well established that unmutated CLLs (U-CLLs) have worse evolution than mutated cases. Nevertheless, progression and treatment requirement of patients can evolve independently from the mutational status. Microenvironment signaling or epigenetic changes partially explain this different behavior. Thus, we think that detailed characterization of the miRNAs landscape from patients with different clinical evolution could facilitate the understanding of this heterogeneity. Since miRNAs are key players in leukemia pathogenesis and evolution, we aim to better characterize different CLL behaviors by comparing the miRNome of clinically progressive U-CLLs vs. stable U-CLLs. Our data show up-regulation of miR-26b-5p, miR-106b-5p, and miR-142-5p in progressive cases and indicate a key role for miR-26b-5p during CLL progression. Specifically, up-regulation of miR-26b-5p in CLL cells blocks TGF-ß/SMAD pathway by down-modulation of SMAD-4, resulting in lower expression of p21-Cip1 kinase inhibitor and higher expression of c-Myc oncogene. This work describes a new molecular mechanism linking CLL progression with TGF-ß modulation and proposes an alternative strategy to explore in CLL therapy.

2.
Blood ; 130(6): 777-788, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28596424

ABSTRACT

Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by accumulation of clonal B lymphocytes, resulting from a complex balance between cell proliferation and apoptotic death. Continuous crosstalk between cancer cells and local/distant host environment is required for effective tumor growth. Among the main actors of this dynamic interplay between tumoral cells and their microenvironment are the nano-sized vesicles called exosomes. Emerging evidence indicates that secretion, composition, and functional capacity of exosomes are altered as tumors progress to an aggressive phenotype. In CLL, no data exist exploring the specific changes in the proteomic profile of plasma-derived exosomes from patients during disease evolution. We hereby report for the first time different proteomic profiles of plasma exosomes, both between indolent and progressive CLLs as well as within the individual patients at the onset of disease and during its progression. Next, we focus on the changes of the exosome protein cargoes, which are found exclusively in patients with progressive CLL after disease progression. The alterations in the proteomic cargoes underline different networks specific for leukemia progression related to inflammation, oxidative stress, and NF-κB and phosphatidylinositol 3-kinase/AKT pathway activation. Finally, our results suggest a preponderant role for the protein S100-A9 as an activator of the NFκB pathway during CLL progression and suggest that the leukemic clone can generate an autoactivation loop through S100-A9 expression, NF-κB activation, and exosome secretion. Collectively, our data propose a new pathway for NF-κB activation in CLL and highlight the importance of exosomes as extracellular mediators promoting tumor progression in CLL.


Subject(s)
Calgranulin B/immunology , Exosomes/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , NF-kappa B/immunology , Basigin/analysis , Basigin/immunology , Calgranulin B/analysis , Disease Progression , Exosomes/immunology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , NF-kappa B/analysis , Proteome/analysis , Proteome/immunology
3.
Br J Haematol ; 166(1): 98-108, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24684350

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma, where survival has been remarkably improved by use of protocols including high dose cytarabine, rituximab and autologous stem cell transplantation, such as the Nordic MCL2/3 protocols. In 2008, a MCL international prognostic index (MIPI) was created to enable stratification of the clinical diverse MCL patients into three risk groups. So far, use of the MIPI in clinical routine has been limited, as it has been shown that it inadequately separates low and intermediate risk group patients. To improve outcome and minimize treatment-related morbidity, additional parameters need to be evaluated to enable risk-adapted treatment selection. We have investigated the individual prognostic role of the MIPI and molecular markers including SOX11, TP53 (p53), MKI67 (Ki-67) and CCND1 (cyclin D1). Furthermore, we explored the possibility of creating an improved prognostic tool by combining the MIPI with information on molecular markers. SOX11 was shown to significantly add prognostic information to the MIPI, but in multivariate analysis TP53 was the only significant independent molecular marker. Based on these findings, we propose that TP53 and SOX11 should routinely be assessed and that a combined TP53/MIPI score may be used to guide treatment decisions.


Subject(s)
Biomarkers, Tumor/metabolism , Lymphoma, Mantle-Cell/diagnosis , SOXC Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Adolescent , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Child , Cohort Studies , Cyclin D1/metabolism , Female , Humans , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/pathology , Male , Neoplasm Proteins/metabolism , Neoplasm Staging , Prognosis , Severity of Illness Index , Survival Analysis , Treatment Outcome
4.
PLoS One ; 8(7): e70596, 2013.
Article in English | MEDLINE | ID: mdl-23923007

ABSTRACT

T-STAR (testis-signal transduction and activation of RNA) is an RNA binding protein, containing an SH3-binding domain and thus potentially playing a role in integration of cell signaling and RNA metabolism. The specific function of T-STAR is unknown and its implication in cancer is poorly characterized. Expression of T-STAR has been reported in human testis, muscle and brain tissues, and is associated with a growth-inhibitory role in immortalized fibroblasts. The aim of this paper was to investigate the functional role of T-STAR through (i) survival analysis of patients with primary invasive breast cancer and (ii) experimental evaluation of the effect of T-STAR on breast cancer cell growth. T-STAR protein expression was analysed by immunohistochemistry (IHC) in tissue microarrays with tumors from 289 patients with primary invasive breast cancer, and correlations to clinicopathological characteristics, recurrence-free and overall survival (RFS and OS) and established tumor markers such as HER2 and ER status were evaluated. In addition, the function of T-STAR was investigated using siRNA-mediated knock-down and overexpression of the gene in six breast cancer cell lines. Of the tumors analysed, 86% showed nuclear T-STAR expression, which was significantly associated with an improved RFS and strongly associated with positive HER2 status and negative hormone receptor status. Furthermore, experimental data showed that overexpression of T-STAR decreased cellular growth while knock-down increased it, as shown both by thymidine incorporation and metabolic activity. In summary, we demonstrate that T-STAR protein expression correlates with an improved RFS in primary breast cancer. This is supported by functional data, indicating that T-STAR regulation is of importance both for breast cancer biology and clinical outcome but future studies are needed to determine a potential role in patient stratification.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/mortality , RNA-Binding Proteins/metabolism , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , Female , Gene Expression , Gene Knockdown Techniques , Humans , Immunohistochemistry , Middle Aged , Neoplasm Staging , Protein Transport , RNA-Binding Proteins/genetics
5.
BMC Cancer ; 11: 405, 2011 Sep 24.
Article in English | MEDLINE | ID: mdl-21943380

ABSTRACT

BACKGROUND: The neural transcription factor SOX11 has been described as a prognostic marker in epithelial ovarian cancers (EOC), however its role in individual histological subtypes and tumour grade requires further clarification. Furthermore, methylation-dependent silencing of SOX11 has been reported for B cell lymphomas and indicates that epigenetic drugs may be used to re-express this tumour suppressor, but information on SOX11 promoter methylation in EOC is still lacking. METHODS: SOX11 expression and clinicopathological data was compared using χ² test in a cohort of 154 cases of primary invasive EOC. Kaplan-Meier analysis and the log rank test were applied to evaluate ovarian cancer-specific survival (OCSS) and overall survival (OS) in strata, according to SOX11 expression. Also, the methylation status of the SOX11 promoter was determined by sodium bisulfite sequencing and methylation specific PCR (MSP). Furthermore, the effect of ectopic overexpression of SOX11 on proliferation was studied through [3H]-thymidine incorporation. RESULTS: SOX11 expression was associated with an improved survival of patients with high grade EOC, although not independent of stage. Further analyses of EOC cell lines showed that SOX11 mRNA and protein were expressed in two of five cell lines, correlating with promoter methylation status. Demethylation was successfully performed using 5'-Aza-2'deoxycytidine (5-Aza-dC) resulting in SOX11 mRNA and protein expression in a previously negative EOC cell line. Furthermore, overexpression of SOX11 in EOC cell lines confirmed the growth regulatory role of SOX11. CONCLUSIONS: SOX11 is a functionally associated protein in EOC with prognostic value for high-grade tumours. Re-expression of SOX11 in EOC indicates a potential use of epigenetic drugs to affect cellular growth in SOX11-negative tumours.


Subject(s)
DNA Methylation , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/mortality , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Promoter Regions, Genetic , SOXC Transcription Factors/genetics , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Endometrial Neoplasms/genetics , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Staging , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/pathology , RNA, Messenger , SOXC Transcription Factors/metabolism
6.
Mol Cancer ; 9: 187, 2010 Jul 12.
Article in English | MEDLINE | ID: mdl-20624318

ABSTRACT

BACKGROUND: The transcription factor SOX11 plays an important role in embryonic development of the central nervous system (CNS) and is expressed in the adult immature neuron but is normally not expressed in any other adult tissue. It has recently been reported to be implicated in various malignant neoplasms, including several lymphoproliferative diseases, by its specific expression and in some cases correlation to prognosis. SOX11 has been shown to prevent gliomagenesis in vivo but the causes and consequences of aberrant expression of SOX11 outside the CNS remain unexplained. RESULTS: We now show the first function of SOX11 in lymphoproliferative diseases, by demonstrating in vitro its direct involvement in growth regulation, as assessed by siRNA-mediated silencing and ectopic overexpression in hematopoietic malignancies. Gene Chip analysis identified cell cycle regulatory pathways, including Rb-E2F, to be associated with SOX11-induced growth reduction. Furthermore, promoter analysis revealed that SOX11 is silenced through DNA methylation in B cell lymphomas, suggesting that its regulation is epigenetically controlled. CONCLUSIONS: The data show that SOX11 is not a bystander but an active and central regulator of cellular growth, as both siRNA-mediated knock-down and ectopic overexpression of SOX11 resulted in altered proliferation. Thus, these data demonstrate a tumor suppressor function for SOX11 in hematopoietic malignancies and revealed a potential epigenetic regulation of this developmentally involved gene.


Subject(s)
DNA Methylation , Hematologic Neoplasms/genetics , Promoter Regions, Genetic , SOXC Transcription Factors/genetics , Cell Division , Gene Knockdown Techniques , Gene Silencing , Hematologic Neoplasms/pathology , Humans
7.
Haematologica ; 94(11): 1563-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19880779

ABSTRACT

BACKGROUND: We surveyed lymphomas to determine the range of expression of the mantle cell lymphoma-associated SOX11 transcription factor and its relation to cyclin D1. DESIGN AND METHODS: On hundred and seventy-two specimens were immunostained for the SOX11 N and C termini. Cyclin D1 was detected by immunohistochemistry and quantitative reverse transcriptase polymerase chain reaction; in situ hybridization for t(11;14) was applied when needed. RESULTS: Nuclear SOX11 was strongly expressed in most B and T-lymphoblastic leukemia/lymphomas and half of childhood Burkitt's lymphomas, but only weakly expressed in some hairy cell leukemias. Chronic lymphocytic leukemia/lymphoma, marginal zone, follicular and diffuse large B-cell lymphomas were negative for SOX11, as were all cases of intermediate Burkitt's lymphomas/diffuse large B-cell lymphoma, myeloma, Hodgkin's lymphomas and mature T-cell and NK/T-cell lymphomas. CONCLUSIONS: In addition to mantle cell lymphoma, SOX11 is strongly expressed only in lymphoblastic malignancies and Burkitt's lymphomas. Its expression is independent of cyclin D1 (except for weak expression in hairy cell leukemias) and unlikely to be due to translocations in lymphoid neoplasia.


Subject(s)
Burkitt Lymphoma/chemistry , Lymphoma, Mantle-Cell/chemistry , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , SOXC Transcription Factors/analysis , Cyclin D1/analysis , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Polymerase Chain Reaction , SOXC Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...