Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 43: 108342, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35712361

ABSTRACT

The geodetic dataset used in the research article entitled "Multi-technique geodetic detection of onshore and offshore subsidence along the Upper Adriatic Sea coasts"[1] is presented here. It consists of the outcomes of three different techniques, i.e. Synthetic Aperture Radar Interferometry (InSAR), Global Navigation Satellite System (GNSS) and topographic Levelling surveys. This dataset has been used for the estimation of onshore and offshore deformation in a mineral concession area located along the Upper Adriatic Sea coastal area (Italy), South-East of Ravenna city. InSAR data covers the period from 2002 to 2018, GNSS data from 1998 to 2018 and levelling data from 2002 to 2017.The different measurements have been cross-validated and referred to a common local reference system fixed in the urban area of Ravenna. This data collection will be very useful for deepening the analysis of any type of deformation in the Ravenna coastal area.

2.
Sci Data ; 7(1): 373, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149127

ABSTRACT

We provide a dataset of 3D coordinate time series of 37 continuous GNSS stations installed for stability monitoring purposes on onshore and offshore industrial settlements along a NW-SE-oriented and ~100-km-wide belt encompassing the eastern Italian coast and the Adriatic Sea. The dataset results from the analysis performed by using different geodetic software (Bernese, GAMIT/GLOBK and GIPSY) and consists of six raw position time series solutions, referred to IGb08 and IGS14 reference frames. Time series analyses and comparisons evidence that the different solutions are consistent between them, despite the use of different software, models, strategy processing and frame realizations. We observe that the offshore stations are subject to significant seasonal oscillations probably due to seasonal environmental loads, seasonal temperature-induced platform deformation and hydrostatic pressure variations. Many stations are characterized by non-linear time series, suggesting a complex interplay between regional (long-term tectonic stress) and local sources of deformation (e.g. reservoirs depletion, sediment compaction). Computed raw time series, logs files, phasor diagrams and time series comparison plots are distributed via PANGAEA ( https://www.pangaea.de ).

SELECTION OF CITATIONS
SEARCH DETAIL
...