Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 191: 114929, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37075560

ABSTRACT

To mitigate marine debris and promote sustainable marine industries, legislation and regulations surrounding the management of marine debris have been adopted worldwide. One of the most well-known and important agreements is the International Convention for the Prevention of Pollution from Ships (MARPOL), which focuses on reducing all types of ship-sourced marine pollution. MARPOL Annex V, which deals with the disposal of solid waste, came into force on 31 December 1988. However, was only amended to include a complete ban on waste disposal as of 1 January 2013. Assessing the effectiveness of key regulations is fundamental for supporting evidence-based decisions regarding the management of our oceans. Here, we evaluated whether MARPOL Annex V translated into a decrease in the incidence of shipping- and commercial fishing-sourced debris on remote beaches in Australia using 14 years of standardised, community-driven data. From 2006 to 2020 there was a significant change over time in the density of fishing and shipping debris on Australian beaches; debris density increased up to 2013 followed by a decrease until mid-2017. Although the new regulation started in January 2013, the decrease in density was not recorded until one year later. The decline was only observed for 4 years, reinforcing the existence of lags between the implementation of international agreements and the corresponding potential reduction in debris in the environment. This provides compelling evidence that international agreements and policies by themselves are not enough to solve the debris problem, with improved implementation and enforcement also required. We discuss future perspectives and solutions to reduce ocean-sourced litter inputs into the ocean and highlight the urgent need for action.


Subject(s)
Environmental Monitoring , Plastics , Australia , Bathing Beaches , Environmental Pollution , Waste Products , Water Pollution
2.
Rev Fish Biol Fish ; 32(1): 145-160, 2022.
Article in English | MEDLINE | ID: mdl-34366578

ABSTRACT

In the age of the Anthropocene, the ocean has typically been viewed as a sink for pollution. Pollution is varied, ranging from human-made plastics and pharmaceutical compounds, to human-altered abiotic factors, such as sediment and nutrient runoff. As global population, wealth and resource consumption continue to grow, so too does the amount of potential pollution produced. This presents us with a grand challenge which requires interdisciplinary knowledge to solve. There is sufficient data on the human health, social, economic, and environmental risks of marine pollution, resulting in increased awareness and motivation to address this global challenge, however a significant lag exists when implementing strategies to address this issue. This review draws upon the expertise of 17 experts from the fields of social sciences, marine science, visual arts, and Traditional and First Nations Knowledge Holders to present two futures; the Business-As-Usual, based on current trends and observations of growing marine pollution, and a More Sustainable Future, which imagines what our ocean could look like if we implemented current knowledge and technologies. We identify priority actions that governments, industry and consumers can implement at pollution sources, vectors and sinks, over the next decade to reduce marine pollution and steer us towards the More Sustainable Future. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09674-8.

3.
Environ Sci Technol ; 53(21): 12158-12167, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31577441

ABSTRACT

Marine debris is distributed worldwide and constitutes an increasing threat to our environment. The exponential increase in the level of plastic debris raises numerous concerns and has led to an intensification in plastic monitoring and research. However, global spatial and temporal patterns and knowledge gaps in debris distribution, both on land and at sea, are relatively poorly understood, mainly due to a lack of comprehensive data sets. Here, we critically review the quality of the available information about beach plastic debris worldwide to highlight where the most urgent actions are required and to promote the standardization of reporting metrics and sampling methods among researchers. From a total of 174 studies evaluated, 27.0% reported marine debris densities in metrics that were not comparable. Some studies failed to report basic parameters, such as the date of the sampling (9.8%) or the size of the collected debris (19.5%). Our findings show that current research regarding beach debris requires significant improvement and standardization and would benefit from the adoption of a common reporting framework to promote consensus within the scientific community.


Subject(s)
Environmental Monitoring , Waste Products , Bathing Beaches , Plastics
4.
Environ Pollut ; 231(Pt 1): 123-133, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28797901

ABSTRACT

Microplastics are widespread in aquatic environments and can be ingested by a wide range of organisms. They can also be transferred along food webs. Estuaries and other tidal wetlands may be particularly prone to this type of pollution due to their particular hydrological characteristics and sewage input, but few studies have compared wetlands with different anthropogenic pressure. Furthermore, there is no information on microplastic transfer to secondary intertidal consumers such as shorebirds. We analysed intertidal sediments, macroinvertebrates and shorebirds, from three important wetlands along the Eastern Atlantic (Tejo estuary, Portugal; Banc d'Arguin, Mauritania and Bijagós archipelago, Guinea-Bissau), in order to evaluate the prevalence and transfer of microplastics along the intertidal food web. We further investigated variables that could explain the distribution of microplastics within the intertidal areas of the Tejo estuary. Microfibers were recorded in a large proportion of sediment samples (91%), macroinvertebrates (60%) and shorebird faeces (49%). µ-FTIR analysis indicated only 52% of these microfibers were composed of synthetic polymers (i.e. plastics). Microfiber concentrations were generally higher in the Tejo and lower in the Bijagós, with intermediate values for Banc d'Arguin, thus following a latitudinal gradient. Heavier anthropogenic pressure in the Tejo explains this pattern, but the relatively high concentrations in a pristine site like the Banc d'Arguin demonstrate the spread of pollution in the oceans. Similar microfiber concentrations in faeces of shorebirds with different foraging behaviour and similar composition of fibres collected from invertebrate and faeces suggest shorebirds mainly ingest microfibers through their prey, confirming microfiber transfer along intertidal food webs. Within the Tejo estuary, concentration of microfibers in the sediment and bivalves were positively related with the percentage of fine sediments and with the population size of the closest township, suggesting that hydrodynamics and local domestic sewage are the main factors influencing the distribution of microfibers.


Subject(s)
Environmental Monitoring , Invertebrates/metabolism , Plastics/analysis , Water Pollutants, Chemical/analysis , Wetlands , Africa, Western , Animals , Birds/metabolism , Estuaries , Europe , Food Chain , Geologic Sediments/chemistry , Oceans and Seas , Portugal , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...