Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 17(8): 1666-1674, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35017413

ABSTRACT

Alzheimer's disease is a neurodegenerative disease that accounts for most of the 50-million dementia cases worldwide in 2018. A large amount of evidence supports the amyloid cascade hypothesis, which states that amyloid-beta accumulation triggers tau hyperphosphorylation and aggregation in form of neurofibrillary tangles, and these aggregates lead to inflammation, synaptic impairment, neuronal loss, and thus to cognitive decline and behavioral abnormalities. The poor correlation found between cognitive decline and amyloid plaques, have led the scientific community to question whether amyloid-beta accumulation is actually triggering neurodegeneration in Alzheimer's disease. The occurrence of tau neurofibrillary tangles better correlates to neuronal loss and clinical symptoms and, although amyloid-beta may initiate the cascade of events, tau impairment is likely the effector molecule of neurodegeneration. Recently, it has been shown that amyloid-beta and tau cooperatively work to impair transcription of genes involved in synaptic function and, more importantly, that downregulation of tau partially reverses transcriptional perturbations. Despite mounting evidence points to an interplay between amyloid-beta and tau, some factors could independently affect both pathologies. Thus, the dual pathway hypothesis, which states that there are common upstream triggers causing both amyloid-beta and tau abnormalities has been proposed. Among others, the immune system seems to be strongly involved in amyloid-beta and tau pathologies. Other factors, as the apolipoprotein E ε4 isoform has been suggested to act as a link between amyloid-beta and tau hyperphosphorylation. Interestingly, amyloid-beta-immunotherapy reduces not only amyloid-beta but also tau levels in animal models and in clinical trials. Likewise, it has been shown that tau-immunotherapy also reduces amyloid-beta levels. Thus, even though amyloid-beta immunotherapy is more advanced than tau-immunotherapy, combined amyloid-beta and tau-directed therapies at early stages of the disease have recently been proposed as a strategy to stop the progression of Alzheimer's disease.

2.
Int J Mol Sci ; 21(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927795

ABSTRACT

Alzheimer's disease (AD) is the most common dementia worldwide. According to the amyloid hypothesis, the early accumulation of the Aß-peptide triggers tau phosphorylation, synaptic dysfunction, and eventually neuronal death leading to cognitive impairment, as well as behavioral and psychological symptoms of dementia. ScFv-h3D6 is a single-chain variable fragment that has already shown its ability to diminish the amyloid burden in 5-month-old 3xTg-AD mice. However, tau pathology is not evident at this early stage of the disease in this mouse model. In this study, the effects of scFv-h3D6 on Aß and tau pathologies have been assessed in 22-month-old 3xTg-AD mice. Briefly, 3xTg-AD female mice were treated for 2 weeks with scFv-h3D6 and compared with 3xTg-AD and non-transgenic (NTg) mice treated with PBS. The treatment with scFv-h3D6 was unequivocally effective in reducing the area of Aß staining. Furthermore, a tendency for a reduction in tau levels was also observed after treatment that points to the interplay between Aß and tau pathologies. The pro-inflammatory state observed in the 3xTg-AD mice did not progress after scFv-h3D6 treatment. In addition, the treatment did not alter the levels of apolipoprotein E or apolipoprotein J. Thus, a 2-week treatment with scFv-h3D6 was able to reduce AD-like pathology in elderly 3xTg-AD female mice.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Drug Evaluation, Preclinical , Female , Hippocampus/metabolism , Mice, Transgenic , tau Proteins/metabolism
3.
Biochim Biophys Acta Biomembr ; 1861(7): 1302-1316, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31077676

ABSTRACT

Aggregated LDL is the first ligand reported to interact with the cluster II CR9 domain of low-density lipoprotein receptor-related protein 1 (LRP1). In particular, the C-terminal half of domain CR9, comprising the region Gly1127-Cys1140 exclusively recognizes aggregated LDL and it is crucial for aggregated LDL binding. Our aim was to study the effect of the sequence Gly1127-Cys1140 (named peptide LP3 and its retro-enantio version, named peptide DP3) on the structural characteristics of sphingomyelinase- (SMase) and phospholipase 2 (PLA2)-modified LDL particles. Turbidimetry, gel filtration chromatography (GFC) and transmission electronic microscopy (TEM) analysis showed that LP3 and DP3 peptides strongly inhibited SMase- and PLA2-induced LDL aggregation. Nondenaturing polyacrylamide gradient gel electrophoresis (GGE), agarose gel electrophoresis and high-performance thin-layer chromatography (HPTLC) indicated that LP3 and DP3 prevented SMase-induced alterations in LDL particle size, electric charge and phospholipid content, respectively, but not those induced by PLA2. Western blot analysis showed that LP3 and DP3 counteracted changes in ApoB-100 conformation induced by the two enzymes. LDL proteomics (LDL trypsin digestion followed by mass spectroscopy) and computational modeling methods evidenced that peptides preserve ApoB-100 conformation due to their electrostatic interactions with a basic region of ApoB-100. These results demonstrate that LRP1-derived peptides are protective against LDL aggregation, even in conditions of extreme lipolysis, through their capacity to bind to ApoB-100 regions critical for ApoB-100 conformational preservation. These results suggests that these LRP1(CR9) derived peptides could be promising tools to prevent LDL aggregation induced by the main proteolytic enzymes acting in the arterial intima.


Subject(s)
Lipoproteins, LDL/chemistry , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Peptides/metabolism , Arthropod Proteins/blood , Humans , Low Density Lipoprotein Receptor-Related Protein-1/chemistry , Oligopeptides/blood , Phospholipases A2/metabolism , Phospholipids/chemistry , Protein Binding , Sphingomyelin Phosphodiesterase/chemistry , Static Electricity
4.
Biochem Pharmacol ; 155: 380-392, 2018 09.
Article in English | MEDLINE | ID: mdl-30026023

ABSTRACT

Anti-Aß immunotherapy has emerged as a promising approach to treat Alzheimer's disease (AD). The single-chain variable fragment scFv-h3D6 is an anti-Aß antibody fragment that lacks the Fc region, which is associated with the induction of microglial reactivity by the full-length monoclonal antibody bapineuzumab. ScFv-h3D6 was previously shown to restore the levels of apolipoprotein E (apoE) and apolipoprotein J (apoJ) in a triple-transgenic-AD (3xTg-AD) mouse model. Since apoE and apoJ play an important role in the development of AD, we aimed to study the in vivo effect of the combined therapy of scFv-h3D6 with apoE and apoJ mimetic peptides (MPs). Four-and-a-half-month-old 3xTg-AD mice were treated for six weeks with scFv-h3D6, apoE-MP, apoJ-MP, or a combination of scFv-h3D6 with each of the MPs, or a vehicle, and then the results were compared to non-transgenic mice. Magnetic Resonance Imaging showed a general tendency of the different treatments to protect against the reduction in brain volume. Aß burden decreased after treatment with scFv-h3D6, apoE-MP, or apoJ-MP, but the effect was not as evident with the combined therapies. In terms of glial reactivity, apoE-MP showed a potent anti-inflammatory effect that was eased by the presence of scFv-h3D6, whereas the combination of apoJ-MP and scFv-h3D6 was not detrimental. ScFv-h3D6 alone did not induce microglial reactivity, as full-length antibodies do; rather, it reduced it. Endogenous apoE and apoJ levels were decreased by scFv-h3D6, but the MPs lead to a simultaneous increase of both apolipoproteins. While apoE-MP and apoJ-MP demonstrated different effects in the combined therapies with scFv-h3D6, they did not improve the overall protective effect of scFv-h3D6 in reducing the Aß burden, apolipoproteins levels or microglial reactivity.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoproteins E/administration & dosage , Biomimetic Materials/administration & dosage , Clusterin/administration & dosage , Single-Chain Antibodies/administration & dosage , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amino Acid Sequence , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/genetics , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Female , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Mice, Transgenic , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...