Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38337072

ABSTRACT

OBJECTIVES: To develop and validate a deep learning-based approach to automatically measure the patellofemoral instability (PFI) indices related to patellar height and trochlear dysplasia in knee magnetic resonance imaging (MRI) scans. METHODS: A total of 763 knee MRI slices from 95 patients were included in the study, and 3393 anatomical landmarks were annotated for measuring sulcus angle (SA), trochlear facet asymmetry (TFA), trochlear groove depth (TGD) and lateral trochlear inclination (LTI) to assess trochlear dysplasia, and Insall-Salvati index (ISI), modified Insall-Salvati index (MISI), Caton Deschamps index (CDI) and patellotrochlear index (PTI) to assess patellar height. A U-Net based network was implemented to predict the landmarks' locations. The successful detection rate (SDR) and the mean absolute error (MAE) evaluation metrics were used to evaluate the performance of the network. The intraclass correlation coefficient (ICC) was also used to evaluate the reliability of the proposed framework to measure the mentioned PFI indices. RESULTS: The developed models achieved good accuracy in predicting the landmarks' locations, with a maximum value for the MAE of 1.38 ± 0.76 mm. The results show that LTI, TGD, ISI, CDI and PTI can be measured with excellent reliability (ICC > 0.9), and SA, TFA and MISI can be measured with good reliability (ICC > 0.75), with the proposed framework. CONCLUSIONS: This study proposes a reliable approach with promising applicability for automatic patellar height and trochlear dysplasia assessment, assisting the radiologists in their clinical practice. CLINICAL RELEVANCE STATEMENT: The objective knee landmarks detection on MRI images provided by artificial intelligence may improve the reproducibility and reliability of the imaging evaluation of trochlear anatomy and patellar height, assisting radiologists in their clinical practice in the patellofemoral instability assessment. KEY POINTS: • Imaging evaluation of patellofemoral instability is subjective and vulnerable to substantial intra and interobserver variability. • Patellar height and trochlear dysplasia are reliably assessed in MRI by means of artificial intelligence (AI). • The developed AI framework provides an objective evaluation of patellar height and trochlear dysplasia enhancing the clinical practice of the radiologists.

2.
Comput Med Imaging Graph ; 113: 102350, 2024 04.
Article in English | MEDLINE | ID: mdl-38340574

ABSTRACT

Recent advances in medical imaging have highlighted the critical development of algorithms for individual vertebral segmentation on computed tomography (CT) scans. Essential for diagnostic accuracy and treatment planning in orthopaedics, neurosurgery and oncology, these algorithms face challenges in clinical implementation, including integration into healthcare systems. Consequently, our focus lies in exploring the application of knowledge distillation (KD) methods to train shallower networks capable of efficiently segmenting vertebrae in CT scans. This approach aims to reduce segmentation time, enhance suitability for emergency cases, and optimize computational and memory resource efficiency. Building upon prior research in the field, a two-step segmentation approach was employed. Firstly, the spine's location was determined by predicting a heatmap, indicating the probability of each voxel belonging to the spine. Subsequently, an iterative segmentation of vertebrae was performed from the top to the bottom of the CT volume over the located spine, using a memory instance to record the already segmented vertebrae. KD methods were implemented by training a teacher network with performance similar to that found in the literature, and this knowledge was distilled to a shallower network (student). Two KD methods were applied: (1) using the soft outputs of both networks and (2) matching logits. Two publicly available datasets, comprising 319 CT scans from 300 patients and a total of 611 cervical, 2387 thoracic, and 1507 lumbar vertebrae, were used. To ensure dataset balance and robustness, effective data augmentation methods were applied, including cleaning the memory instance to replicate the first vertebra segmentation. The teacher network achieved an average Dice similarity coefficient (DSC) of 88.22% and a Hausdorff distance (HD) of 7.71 mm, showcasing performance similar to other approaches in the literature. Through knowledge distillation from the teacher network, the student network's performance improved, with an average DSC increasing from 75.78% to 84.70% and an HD decreasing from 15.17 mm to 8.08 mm. Compared to other methods, our teacher network exhibited up to 99.09% fewer parameters, 90.02% faster inference time, 88.46% shorter total segmentation time, and 89.36% less associated carbon (CO2) emission rate. Regarding our student network, it featured 75.00% fewer parameters than our teacher, resulting in a 36.15% reduction in inference time, a 33.33% decrease in total segmentation time, and a 42.96% reduction in CO2 emissions. This study marks the first exploration of applying KD to the problem of individual vertebrae segmentation in CT, demonstrating the feasibility of achieving comparable performance to existing methods using smaller neural networks.


Subject(s)
Carbon Dioxide , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Neural Networks, Computer , Algorithms , Lumbar Vertebrae
SELECTION OF CITATIONS
SEARCH DETAIL
...