Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Nano ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38978500

ABSTRACT

The development of biomaterials capable of regulating cellular processes and guiding cell fate decisions has broad implications in tissue engineering, regenerative medicine, and cell-based assays for drug development and disease modeling. Recent studies have shown that three-dimensional (3D) nanoscale physical cues such as nanotopography can modulate various cellular processes like adhesion and endocytosis by inducing nanoscale curvature on the plasma and nuclear membranes. Two-dimensional (2D) biochemical cues such as protein micropatterns can also regulate cell function and fate by controlling cellular geometries. Development of biomaterials with precise control over nanoscale physical and biochemical cues can significantly influence programming cell function and fate. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate the precise engineering of single cell architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between the nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, our results suggest that cell elongation on nanopillars enhances nanopillar-induced endocytosis. We believe our platform serves as a versatile tool for further explorations into programming cell function and fate through combined physical cues that create nanoscale curvature on cell membranes and biochemical cues that control the geometry of the cell.

2.
J Org Chem ; 79(20): 9647-54, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25238507

ABSTRACT

On the basis of previous conformational and configurational studies of 4-aryl-substituted cyclophosph(on)ates derived from d-xylofuranose derivatives, wherein it was proposed that the anomeric effect is involved in the spontaneous isomerization of the P atom and the C4 carbon, and consequently, this unusual behavior was associated with the cleavage of the HepDirect prodrugs. We synthesized an analogous series of 2-amino-2-oxo-1,3,2-dioxaphosphorinanes and performed a conformational and configurational analysis in solution and the solid state followed by an examination of their mutagenic activity. The results showed that the 2-amino-2-oxo-1,3,2-dioxaphosphorinanes with the largest mutagenic activity contain either a 4-methoxyphenyl or 4-fluorophenyl group at C4 carbon and presented a major chair conformation, which is prone to weaken the C4-O3 bond via the anomeric effect and facilitates the cleavage for the release of the biologically active metabolite.


Subject(s)
Cyclophosphamide/chemistry , Organophosphorus Compounds/chemistry , Prodrugs/chemistry , Isomerism , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...