Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Discov ; 28(2): 29-35, 2023 03.
Article in English | MEDLINE | ID: mdl-36649793

ABSTRACT

Small airway epithelial cells (SAECs) play a central role in the pathogenesis of lung diseases and are now becoming a crucial cellular model for target identification and validation in drug discovery. However, primary cell lines such as SAECs are often difficult to transfect using traditional lipofection methods; therefore, gene editing using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is often carried out through ribonucleoprotein (RNP) electroporation. Here we have established a robust, scalable, and automated arrayed CRISPR nuclease (CRISPRn) screening workflow for SAECs which can be combined with a myriad of disease-specific endpoint assays.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Gene Silencing , Lung , Epithelial Cells/metabolism
2.
Cells ; 8(10)2019 10 16.
Article in English | MEDLINE | ID: mdl-31623154

ABSTRACT

S100A4, belonging to a large multifunctional S100 protein family, is a Ca2+-binding protein with a significant role in stimulating the motility of cancer and immune cells, as well as in promoting pro-inflammatory properties in different cell types. In the CNS, there is limited information concerning S100A4 presence and function. In this study, we analyzed the expression of S100A4 and the effect of the S100A4 transcriptional inhibitor niclosamide in murine activated primary microglia. We found that S100A4 was strongly up-regulated in reactive microglia and that niclosamide prevented NADPH oxidase 2, mTOR (mammalian target of rapamycin), and NF-κB (nuclear factor-kappa B) increase, cytoskeletal rearrangements, migration, and phagocytosis. Furthermore, we found that S100A4 was significantly up-regulated in astrocytes and microglia in the spinal cord of a transgenic rat SOD1-G93A model of amyotrophic lateral sclerosis. Finally, we demonstrated the increased expression of S100A4 also in fibroblasts derived from amyotrophic lateral sclerosis (ALS) patients carrying SOD1 pathogenic variants. These results ascribe S100A4 as a marker of microglial reactivity, suggesting the contribution of S100A4-regulated pathways to neuroinflammation, and identify niclosamide as a possible drug in the control and attenuation of reactive phenotypes of microglia, thus opening the way to further investigation for a new application in neurodegenerative conditions.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Microglia/cytology , Microglia/drug effects , Niclosamide/therapeutic use , S100 Calcium-Binding Protein A4/antagonists & inhibitors , Adult , Amyotrophic Lateral Sclerosis/immunology , Animals , Blotting, Western , Cell Movement/drug effects , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Mice , Microglia/immunology , Microglia/metabolism , Microscopy, Fluorescence , Middle Aged , NF-kappa B/metabolism , Phagocytosis/drug effects , Real-Time Polymerase Chain Reaction , S100 Calcium-Binding Protein A4/metabolism , Superoxide Dismutase-1 , TOR Serine-Threonine Kinases/metabolism
3.
J Neurochem ; 148(2): 168-187, 2019 01.
Article in English | MEDLINE | ID: mdl-30144068

ABSTRACT

S100B is a Ca2+ -binding protein mainly concentrated in astrocytes. Its levels in biological fluids (cerebrospinal fluid, peripheral and cord blood, urine, saliva, amniotic fluid) are recognized as a reliable biomarker of active neural distress. Although the wide spectrum of diseases in which the protein is involved (acute brain injury, neurodegenerative diseases, congenital/perinatal disorders, psychiatric disorders) reduces its specificity, its levels remain an important aid in monitoring the trend of the disorder. Mounting evidence now points to S100B as a Damage-Associated Molecular Pattern molecule which, when released at high concentration, through its Receptor for Advanced Glycation Endproducts, triggers tissue reaction to damage in a series of different neural disorders. This review addresses this novel scenario, presenting data indicating that S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease: acute brain injury (ischemic/hemorrhagic stroke, traumatic injury), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis), congenital/perinatal disorders (Down syndrome, spinocerebellar ataxia-1), psychiatric disorders (schizophrenia, mood disorders), inflammatory bowel disease. In many cases, over-expression/administration of the protein induces worsening of the disease, whereas its deletion/inactivation produces amelioration. This review points out that the pivotal role of the protein resulting from these data, opens the perspective that S100B may be regarded as a therapeutic target for these different diseases, which appear to share some common features reasonably attributable to neuroinflammation, regardless their origin.


Subject(s)
Biomarkers , Nervous System Diseases , S100 Calcium Binding Protein beta Subunit , Animals , Humans
4.
J Neurochem ; 146(5): 585-597, 2018 09.
Article in English | MEDLINE | ID: mdl-29779213

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) is an RNA-binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP-43 exists as a full-length protein and as two shorter forms of 25 and 35 kDa. Full-length mutant TDP-43s found in amyotrophic lateral sclerosis patients re-localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP-43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kDa truncated form of TDP-43 is restricted to the intermembrane space, while the full-length forms also localize in the mitochondrial matrix in cultured neuronal NSC-34 cells. Interestingly, the full-length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial-transcribed mRNAs, while the 35 kDa form does not. In the light of the known differential contribution of the full-length and short isoforms to generate toxic aggregates, we propose that the presence of full-length TDP-43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP-43 forms play a major role.


Subject(s)
DNA-Binding Proteins/metabolism , Mitochondria/metabolism , Neurons , Oligonucleotides/toxicity , Protein Isoforms/metabolism , Cell Line, Transformed , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Chaperonin 60/genetics , Chaperonin 60/metabolism , Cytosol/drug effects , Cytosol/metabolism , Cytosol/ultrastructure , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Humans , Immunoprecipitation , Microscopy, Electron , Mitochondria/drug effects , Mutation/drug effects , Mutation/genetics , Neurons/drug effects , Neurons/metabolism , Neurons/ultrastructure , Oxygen Consumption/drug effects , Protein Isoforms/genetics , Protein Isoforms/ultrastructure , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Transfection
5.
Front Aging Neurosci ; 9: 242, 2017.
Article in English | MEDLINE | ID: mdl-28790913

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a non-cell autonomous motor neuron loss. While it is generally believed that the disease onset takes place inside motor neurons, different cell types mediating neuroinflammatory processes are considered deeply involved in the progression of the disease. On these grounds, many treatments have been tested on ALS animals with the aim of inhibiting or reducing the pro-inflammatory action of microglia and astrocytes and counteract the progression of the disease. Unfortunately, these anti-inflammatory therapies have been only modestly successful. The non-univocal role played by microglia during stress and injuries might explain this failure. Indeed, it is now well recognized that, during ALS, microglia displays different phenotypes, from surveillant in early stages, to activated states, M1 and M2, characterized by the expression of respectively harmful and protective genes in later phases of the disease. Consistently, the inhibition of microglial function seems to be a valid strategy only if the different stages of microglia polarization are taken into account, interfering with the reactivity of microglia specifically targeting only the harmful pathways and/or potentiating the trophic ones. In this review article, we will analyze the features and timing of microglia activation in the light of M1/M2 phenotypes in the main mice models of ALS. Moreover, we will also revise the results obtained by different anti-inflammatory therapies aimed to unbalance the M1/M2 ratio, shifting it towards a protective outcome.

6.
Mediators Inflamm ; 2017: 1626204, 2017.
Article in English | MEDLINE | ID: mdl-28713206

ABSTRACT

Neuroinflammation is one of the major players in amyotrophic lateral sclerosis (ALS) pathogenesis, and astrocytes are significantly involved in this process. The astrocytic protein S100B can be released in pathological states activating the receptor for advanced glycation end products (RAGE). Different indications point to an aberrant expression of S100B and RAGE in ALS. In this work, we observed that S100B and RAGE are progressively and selectively upregulated in astrocytes of diseased rats with a tissue-specific timing pattern, correlated to the level of neurodegeneration. The expression of the full-length and soluble RAGE isoforms could also be linked to the degree of tissue damage. The mere presence of mutant SOD1 is able to increase the intracellular levels and release S100B from astrocytes, suggesting the possibility that an increased astrocytic S100B expression might be an early occurring event in the disease. Finally, our findings indicate that the protein may exert a proinflammatory role in ALS, since its inhibition in astrocytes derived from SOD1G93A mice limits the expression of reactivity-linked/proinflammatory genes. Thus, our results propose the S100B-RAGE axis as an effective contributor to the pathogenesis of the disease, suggesting its blockade as a rational target for a therapeutic intervention in ALS.


Subject(s)
Receptor for Advanced Glycation End Products/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Superoxide Dismutase-1/metabolism , Animals , Animals, Genetically Modified , Astrocytes/metabolism , Blotting, Western , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Male , Microscopy, Fluorescence , Rats , Receptor for Advanced Glycation End Products/genetics , S100 Calcium Binding Protein beta Subunit/genetics , Superoxide Dismutase-1/genetics
7.
J Cell Sci ; 128(9): 1787-99, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25788698

ABSTRACT

A common feature of non-coding repeat expansion disorders is the accumulation of RNA repeats as RNA foci in the nucleus and/or cytoplasm of affected cells. These RNA foci can be toxic because they sequester RNA-binding proteins, thus affecting various steps of post-transcriptional gene regulation. However, the precise step that is affected by C9orf72 GGGGCC (G4C2) repeat expansion, the major genetic cause of amyotrophic lateral sclerosis (ALS), is still poorly defined. In this work, we set out to characterise these mechanisms by identifying proteins that bind to C9orf72 RNA. Sequestration of some of these factors into RNA foci was observed when a (G4C2)31 repeat was expressed in NSC34 and HeLa cells. Most notably, (G4C2)31 repeats widely affected the distribution of Pur-alpha and its binding partner fragile X mental retardation protein 1 (FMRP, also known as FMR1), which accumulate in intra-cytosolic granules that are positive for stress granules markers. Accordingly, translational repression is induced. Interestingly, this effect is associated with a marked accumulation of poly(A) mRNAs in cell nuclei. Thus, defective trafficking of mRNA, as a consequence of impaired nuclear mRNA export, might affect translation efficiency and contribute to the pathogenesis of C9orf72 ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Cell Nucleus/metabolism , Models, Biological , Protein Biosynthesis , Proteins/metabolism , Trinucleotide Repeat Expansion , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein , DNA-Binding Proteins , Eukaryotic Initiation Factor-2/metabolism , Fragile X Mental Retardation Protein/metabolism , HeLa Cells , Humans , Intracellular Space/metabolism , Mice , Motor Neurons/metabolism , Phosphorylation , Poly(A)-Binding Proteins/metabolism , Protein Binding , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...