Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Acta Neuropathol ; 148(1): 44, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297933

ABSTRACT

[18F]Flortaucipir is an FDA-approved tau-PET tracer that is increasingly utilized in clinical settings for the diagnosis of Alzheimer's disease. Still, a large-scale comparison of the in vivo PET uptake to quantitative post-mortem tau pathology and to other co-pathologies is lacking. Here, we examined the correlation between in vivo [18F]flortaucipir PET uptake and quantitative post-mortem tau pathology in corresponding brain regions from the AVID A16 end-of-life study (n = 63). All participants underwent [18F]flortaucipir PET scans prior to death, followed by a detailed post-mortem neuropathological examination using AT8 (tau) immunohistochemistry. Correlations between [18F]flortaucipir standardized uptake value ratios (SUVRs) and AT8 immunohistochemistry were assessed across 18 regions-of-interest (ROIs). To assess [18F]flortaucipir specificity and level of detection for tau pathology, correlations between [18F]flortaucipir SUVR and neuritic plaque score and TDP-43 stage were also computed and retention was further assessed in individuals with possible primary age-related tauopathy (PART), defined as Thal phase ≤ 2 and Braak stage I-IV. We found modest-to-strong correlations between in vivo [18F]flortaucipir SUVR and post-mortem tau pathology density in corresponding brain regions in all neocortical regions analyzed (rho-range = 0.61-0.79, p < 0.0001 for all). The detection threshold of [18F]flortaucipir PET was determined to be 0.85% of surface area affected by tau pathology in a temporal meta-ROI, and 0.15% in a larger cortical meta-ROI. No significant associations were found between [18F]flortaucipir SUVRs and post-mortem tau pathology in individuals with possible PART. Further, there was no correlation observed between [18F]flortaucipir and level of amyloid-ß neuritic plaque load (rho-range = - 0.16-0.12; p = 0.48-0.61) or TDP-43 stage (rho-range = - 0.10 to - 0.30; p = 0.18-0.65). In conclusion, our in vivo vs post-mortem study shows that the in vivo [18F]flortaucipir PET signal primarily reflects tau pathology, also at relatively low densities of tau proteinopathy, and does not bind substantially to tau neurites in neuritic plaques or in individuals with PART.


Subject(s)
Brain , Carbolines , Positron-Emission Tomography , tau Proteins , Humans , tau Proteins/metabolism , Positron-Emission Tomography/methods , Female , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Male , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Radiopharmaceuticals , Fluorine Radioisotopes
2.
medRxiv ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39281742

ABSTRACT

In recent years, proposals have been advanced to redefine or reclassify Lewy body disorders by merging the long-established entities of Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). These proposals reject the International DLB Consortium classification system that has evolved over three decades of consensus collaborations between neurologists, neuropsychologists and neuropathologists. While the Consortium's "one year rule" for separating PD and DLB has been criticized as arbitrary, it has been a pragmatic and effective tool for splitting the continuum between the two entities. In addition to the decades of literature supporting the non-homogeneity of PD and DLB, it has become increasingly apparent that Lewy body disorders may fundamentally differ in their etiology. Most PD subjects, as well as most clinically-presenting DLB subjects, might best be classified as having a "primary synucleinopathy" while most clinically-unidentified DLB subjects, who also have concurrent neuropathology-criteria AD (AD/DLB), as well as those with neuropathological AD and amygdala-predominant LBD insufficient for a DLB diagnosis, may best be classified as having a "secondary synucleinopathy. Importantly, the DLB Consortium recognized the importance of comorbid AD pathology by defining "Low", "Intermediate" and "High" subdivisions of DLB based on the relative brain stages of both Lewy body and AD pathology. If the one-year rule for separating PD from DLB, and for then dividing DLB into subtypes based on the presence and severity of comorbid AD pathology, is effective, then the divided groups should statistically differ in important ways. In this study we used the comprehensive clinicopathological database of the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND) to empirically test this hypothesis. Furthermore, we used multivariable statistical models to test the hypothesis that comorbid AD neuropathology is a major predictor of the presence and severity of postmortem Lewy synucleinopathy. The results confirm the clinicopathological heterogeneity of Lewy body disorders as well as the profound influence of comorbid AD pathology.

3.
bioRxiv ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39185246

ABSTRACT

Single-cell RNA-seq (scRNA-seq) is emerging as a powerful tool for understanding gene function across diverse cells. Recently, this has included the use of allele-specific expression (ASE) analysis to better understand how variation in the human genome affects RNA expression at the single-cell level. We reasoned that because intronic reads are more prevalent in single-nucleus RNA-Seq (snRNA-Seq), and introns are under lower purifying selection and thus enriched for genetic variants, that snRNA-seq should facilitate single-cell analysis of ASE. Here we demonstrate how experimental and computational choices can improve the results of allelic imbalance analysis. We explore how experimental choices, such as RNA source, read length, sequencing depth, genotyping, etc., impact the power of ASE-based methods. We developed a new suite of computational tools to process and analyze scRNA-seq and snRNA-seq for ASE. As hypothesized, we extracted more ASE information from reads in intronic regions than those in exonic regions and show how read length can be set to increase power. Additionally, hybrid selection improved our power to detect allelic imbalance in genes of interest. We also explored methods to recover allele-specific isoform expression levels from both long- and short-read snRNA-seq. To further investigate ASE in the context of human disease, we applied our methods to a Parkinson's disease cohort of 94 individuals and show that ASE analysis had more power than eQTL analysis to identify significant SNP/gene pairs in our direct comparison of the two methods. Overall, we provide an end-to-end experimental and computational approach for future studies.

4.
Mol Neurodegener ; 19(1): 61, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152475

ABSTRACT

BACKGROUND: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). METHOD: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. RESULTS: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73 × 10-3) in PSP. CONCLUSIONS: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Supranuclear Palsy, Progressive , Whole Genome Sequencing , Humans , Supranuclear Palsy, Progressive/genetics , Genetic Predisposition to Disease/genetics , Male , Female , Aged , Polymorphism, Single Nucleotide/genetics , Middle Aged , Aged, 80 and over
5.
Science ; 385(6711): eabm6131, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39172838

ABSTRACT

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid ß and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Astrocytes , Glucose , Glycolysis , Hippocampus , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Neurons , Animals , Humans , Male , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Cognition/drug effects , Disease Models, Animal , Glucose/metabolism , Glycolysis/drug effects , Hippocampus/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Lactic Acid/metabolism , Long-Term Potentiation , Memory/drug effects , Monocarboxylic Acid Transporters/metabolism , Neurons/metabolism , Receptors, Aryl Hydrocarbon/metabolism , tau Proteins/metabolism , Tryptophan/metabolism
6.
Alzheimers Dement ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215503

ABSTRACT

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked Black Americans (BA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from BA (n = 306), LA (n = 326), or BA and LA (n = 4) brain donors plus non-Hispanic White (n = 252) and other (n = 20) ethnic groups, to establish a foundational dataset enriched for BA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: The inclusion of traditionally underrepresented groups in multi-omics studies is essential to discovering the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD. HIGHLIGHTS: Accelerating Medicines Partnership in Alzheimer's Disease Diversity Initiative led brain tissue profiling in multi-ethnic populations. Brain multi-omics data is generated from Black American, Latin American, and non-Hispanic White donors. RNA, whole genome sequencing and tandem mass tag proteomicsis completed and shared. Multiple brain regions including caudate, temporal and dorsolateral prefrontal cortex were profiled.

7.
Biol Res ; 57(1): 46, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014514

ABSTRACT

BACKGROUND: The nucleus incertus (NI) was originally described by Streeter in 1903, as a midline region in the floor of the fourth ventricle of the human brain with an 'unknown' function. More than a century later, the neuroanatomy of the NI has been described in lower vertebrates, but not in humans. Therefore, we examined the neurochemical anatomy of the human NI using markers, including the neuropeptide, relaxin-3 (RLN3), and began to explore the distribution of the NI-related RLN3 innervation of the hippocampus. METHODS: Histochemical staining of serial, coronal sections of control human postmortem pons was conducted to reveal the presence of the NI by detection of immunoreactivity (IR) for the neuronal markers, microtubule-associated protein-2 (MAP2), glutamic acid dehydrogenase (GAD)-65/67 and corticotrophin-releasing hormone receptor 1 (CRHR1), and RLN3, which is highly expressed in NI neurons in diverse species. RLN3 and vesicular GABA transporter 1 (vGAT1) mRNA were detected by fluorescent in situ hybridization. Pons sections containing the NI from an AD case were immunostained for phosphorylated-tau, to explore potential relevance to neurodegenerative diseases. Lastly, sections of the human hippocampus were stained to detect RLN3-IR and somatostatin (SST)-IR. RESULTS: In the dorsal, anterior-medial region of the human pons, neurons containing RLN3- and MAP2-IR, and RLN3/vGAT1 mRNA-positive neurons were observed in an anatomical pattern consistent with that of the NI in other species. GAD65/67- and CRHR1-immunopositive neurons were also detected within this area. Furthermore, RLN3- and AT8-IR were co-localized within NI neurons of an AD subject. Lastly, RLN3-IR was detected in neurons within the CA1, CA2, CA3 and DG areas of the hippocampus, in the absence of RLN3 mRNA. In the DG, RLN3- and SST-IR were co-localized in a small population of neurons. CONCLUSIONS: Aspects of the anatomy of the human NI are shared across species, including a population of stress-responsive, RLN3-expressing neurons and a RLN3 innervation of the hippocampus. Accumulation of phosphorylated-tau in the NI suggests its possible involvement in AD pathology. Further characterization of the neurochemistry of the human NI will increase our understanding of its functional role in health and disease.


Subject(s)
Pons , Humans , Pons/metabolism , Male , Hippocampus/chemistry , Hippocampus/metabolism , Female , Relaxin/metabolism , Relaxin/genetics , Aged , Neurons/chemistry , Memory/physiology , Microtubule-Associated Proteins/metabolism , Middle Aged , Aged, 80 and over , Immunohistochemistry , In Situ Hybridization, Fluorescence , Glutamate Decarboxylase/metabolism , Glutamate Decarboxylase/genetics , Receptors, Corticotropin-Releasing Hormone
8.
Acta Neuropathol Commun ; 12(1): 111, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956662

ABSTRACT

The genetic architecture of Parkinson's disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using parallel single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution. An integrative bioinformatic pipeline was developed and applied for the analyses of these snMulti-omics datasets. The results identified a subpopulation of cortical glutamatergic excitatory neurons with remarkably altered gene expression in PD, including differentially-expressed genes within PD risk loci identified in genome-wide association studies (GWAS). This was the only neuronal subtype showing significant and robust overexpression of SNCA. Further characterization of this neuronal-subpopulation showed upregulation of specific pathways related to axon guidance, neurite outgrowth and post-synaptic structure, and downregulated pathways involved in presynaptic organization and calcium response. Additionally, we characterized the roles of three molecular mechanisms in governing PD-associated cell subtype-specific dysregulation of gene expression: (1) changes in cis-regulatory element accessibility to transcriptional machinery; (2) changes in the abundance of master transcriptional regulators, including YY1, SP3, and KLF16; (3) candidate regulatory variants in high linkage disequilibrium with PD-GWAS genomic variants impacting transcription factor binding affinities. To our knowledge, this study is the first and the most comprehensive interrogation of the multi-omics landscape of PD at a cell-subtype resolution. Our findings provide new insights into a precise glutamatergic neuronal cell subtype, causal genes, and non-coding regulatory variants underlying the neuropathological progression of PD, paving the way for the development of cell- and gene-targeted therapeutics to halt disease progression as well as genetic biomarkers for early preclinical diagnosis.


Subject(s)
Gene Regulatory Networks , Neurons , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Neurons/metabolism , Neurons/pathology , Male , Female , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Aged , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , Genome-Wide Association Study , Transcriptome , Single-Cell Analysis , Temporal Lobe/metabolism , Temporal Lobe/pathology , Middle Aged , Gene Expression Regulation/genetics , Multiomics
9.
Nat Commun ; 15(1): 5815, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987616

ABSTRACT

The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.


Subject(s)
Alzheimer Disease , Single-Cell Analysis , Transcriptome , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Male , Female , Aged , Microglia/metabolism , Aged, 80 and over , Oligodendroglia/metabolism , Middle Aged , Immunoglobulin G/metabolism , Gene Regulatory Networks , Sequence Analysis, RNA , Brain/metabolism , Brain/pathology , Gene Expression Profiling
10.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979192

ABSTRACT

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer Disease (AD), and recent proteomic studies highlight a disruption of glial carbohydrate metabolism with disease progression. Here, we report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN) in the first step of the kynurenine pathway, rescues hippocampal memory function and plasticity in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid-beta 42 and tau oligomers, two major pathological effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores glycolysis and lactate production. In amyloid-producing APP Swe -PS1 ΔE9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition restores spatial memory and improves hippocampal glucose metabolism by metabolomic and MALDI-MS analyses. IDO1 blockade also rescues hippocampal long-term potentiation (LTP) in a monocarboxylate transporter (MCT)-dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass-labeling of human astrocytes demonstrates that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In co-cultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism. Thus, IDO1 activity disrupts astrocytic metabolic support of neurons across both amyloid and tau pathologies and in a model of AD iPSC-derived neurons. These findings also suggest that IDO1 inhibitors developed for adjunctive therapy in cancer could be repurposed for treatment of amyloid- and tau-mediated neurodegenerative diseases.

11.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063132

ABSTRACT

The diagnostic value of imaging Aß plaques in Alzheimer's disease (AD) has accelerated the development of fluorine-18 labeled radiotracers with a longer half-life for easier translation to clinical use. We have developed [18F]flotaza, which shows high binding to Aß plaques in postmortem human AD brain slices with low white matter binding. We report the binding of [18F]flotaza in postmortem AD hippocampus compared to cognitively normal (CN) brains and the evaluation of [18F]flotaza in transgenic 5xFAD mice expressing Aß plaques. [18F]Flotaza binding was assessed in well-characterized human postmortem brain tissue sections consisting of HP CA1-subiculum (HP CA1-SUB) regions in AD (n = 28; 13 male and 15 female) and CN subjects (n = 32; 16 male and 16 female). Adjacent slices were immunostained with anti-Aß and analyzed using QuPath. In vitro and in vivo [18F]flotaza PET/CT studies were carried out in 5xFAD mice. Post-mortem human brain slices from all AD subjects were positively IHC stained with anti-Aß. High [18F]flotaza binding was measured in the HP CA1-SUB grey matter (GM) regions compared to white matter (WM) of AD subjects with GM/WM > 100 in some subjects. The majority of CN subjects had no decipherable binding. Male AD exhibited greater WM than AD females (AD WM♂/WM♀ > 5; p < 0.001) but no difference amongst CN WM. In vitro studies in 5xFAD mice brain slices exhibited high binding [18F]flotaza ratios (>50 versus cerebellum) in the cortex, HP, and thalamus. In vivo, PET [18F]flotaza exhibited binding to Aß plaques in 5xFAD mice with SUVR~1.4. [18F]Flotaza is a new Aß plaque PET imaging agent that exhibited high binding to Aß plaques in postmortem human AD. Along with the promising results in 5xFAD mice, the translation of [18F]flotaza to human PET studies may be worthwhile.


Subject(s)
Alzheimer Disease , Fluorine Radioisotopes , Hippocampus , Plaque, Amyloid , Positron Emission Tomography Computed Tomography , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Autopsy , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Disease Models, Animal , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Hippocampus/pathology , Mice, Transgenic , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Positron Emission Tomography Computed Tomography/methods , Pyridines , Pyrrolidinones , Radiopharmaceuticals/pharmacokinetics
12.
Res Sq ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38883748

ABSTRACT

Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aß since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aß assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aß40 and Aß42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis. Knockout of Mdkgene in 5xFAD increases amyloid formation and microglial activation. Further comprehensive mass spectrometry-based profiling of whole proteome and aggregated proteome in these mouse models indicates significant accumulation of Aß and Aß-correlated proteins, along with microglial components. Thus, our structural and mouse model studies reveal a protective role of MDK in counteracting amyloid pathology in Alzheimer's disease.

13.
Sci Rep ; 14(1): 13472, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866811

ABSTRACT

Waddlia chondrophila is a possible cause of fetal death in humans. This Chlamydia-related bacterium is an emergent pathogen that causes human miscarriages and ruminant abortions, which results in financial losses. Despite the years of efforts, the underlying mechanism behind the pathogenesis of W. chondrophila is little known which hindered the development of novel treatment options. In the framework of current study, computational approaches were used to identify novel inhibitors (phytocompounds) and drug targets against W. chondrophila. At first, RNA polymerase sigma factor SigA and 3-deoxy-D-manno-octulosonic acid transferase were identified through subtractive proteomics pipeline. Afterwards, extensive docking and simulation analyses were conducted to optimize potentially novel phytocompounds by assessing their binding affinity to target proteins. A 100ns molecular dynamics simulation well complimented the compound's binding affinity and indicated strong stability of predicted compounds at the docked site. The calculation of binding free energies with MMGBSA corroborated the significant binding affinity between phytocompounds and target protein binding sites. The proposed phytocompounds may be a viable treatment option for patients infected with W. chondrophila; however, further research is required to ensure their safety.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Chlamydiales/chemistry , Chlamydiales/drug effects , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Protein Binding , Drug Evaluation, Preclinical , Pharmacophore
14.
JVS Vasc Sci ; 5: 100206, 2024.
Article in English | MEDLINE | ID: mdl-38873494

ABSTRACT

Objective: Stroke and transient ischemic attack may have long-term negative effects on the blood-brain barrier (BBB) and promote endothelial inflammation, both of which could increase neurodegeneration and dementia risk beyond the cell death associated with the index event. Methods: Serum from 88 postmortem subjects in the Arizona Study of Aging and Neurodegenerative Disorders were analyzed by sandwich ELISA for specific biomarkers to investigate the effects of cerebrovascular accidents (CVAs) on BBB integrity and endothelial activation. Statistical analyses were performed using the Mann-Whitney U Test, Spearman rank correlation, and linear/logistic regressions adjusted for potential confounders; a P-value < .05 was considered significant for all analyses. Results: Serum PDGFRẞ, a putative biomarker of BBB injury, was significantly increased in subjects with vs without a history of CVA who had similar cardiovascular risk factors (P < .01). This difference was stable after adjusting for age, hypertension, and other potential confounders in regression analysis (odds ratio, 27.02; 95% confidence interval, 2.61-411.7; P < .01). In addition, PDGFRẞ was positively associated with VCAM-1, a biomarker of endothelial inflammation (ρ = 0.42; P < .01). Conclusions: Our data suggest that patients with stroke or transient ischemic attack have lasting changes in the BBB. Still more, this demonstrates the utility of PDGFRẞ as a serum-based biomarker of BBB physiology, a potentially powerful tool in studying the role of the BBB in various neurodegenerative diseases and COVID infection sequelae. Clinical Relevance: Our data demonstrate the utility of serum PDGFRẞ, a putative biomarker of BBB integrity in the setting of stroke and TIA (CVA). A serum biomarker of BBB integrity could be a useful tool to detect early BBB damage and allow prospective work to study how such damage affects long-term neurodegenerative risk. Since BBB disruption occurs early in ADRD development, it could be monitored to help better understand disease progression and involvement of vascular pathways in ADRD.

15.
Nat Commun ; 15(1): 5133, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879548

ABSTRACT

Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.


Subject(s)
Disease Progression , Lewy Bodies , Lewy Body Disease , alpha-Synuclein , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , alpha-Synuclein/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Brain/pathology , Brain/metabolism , Brain Stem/pathology , Brain Stem/metabolism , Lewy Bodies/pathology , Lewy Bodies/metabolism , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , Olfactory Bulb/pathology , Olfactory Bulb/metabolism
16.
J Am Soc Mass Spectrom ; 35(6): 1253-1260, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38754071

ABSTRACT

Accurate and precise quantification is crucial in modern proteomics, particularly in the context of exploring low-amount samples. While the innovative 4D-data-independent acquisition (DIA) quantitative proteomics facilitated by timsTOF mass spectrometers gives enhanced sensitivity and selectivity for protein identification, the diaPASEF (parallel accumulation-serial fragmentation combined with data-independent acquisition) parameters have not been systematically optimized, and a comprehensive evaluation of the quantification is currently lacking. In this study, we conducted a thorough optimization of key parameters on a timsTOF SCP instrument, including sample loading amount (50 ng), ramp/accumulation time (140 ms), isolation window width (20 m/z), and gradient time (60 min). To further improve the identification of proteins in low-amount samples, we utilized different column settings and introduced 0.02% n-dodecyl-ß-d-maltoside (DDM) in the sample reconstitution solution, resulting in a remarkable 19-fold increase in protein identification at the single-cell-equivalent level. Moreover, a comprehensive comparison of protein quantification using a tandem mass tag reporter (TMT-reporter), complement TMT ions (TMTc), and diaPASEF revealed a strong correlation between these methods. Both diaPASEF and TMTc have effectively addressed the issue of ratio compression, highlighting the diaPASEF method's effectiveness in achieving accurate quantification data compared to TMT reporter quantification. Additionally, an in-depth analysis of in-group variation positioned diaPASEF between the TMT-reporter and TMTc methods. Therefore, diaPASEF quantification on the timsTOF SCP instrument emerges as a precise and accurate methodology for quantitative proteomics, especially for samples with small amounts.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Proteomics/methods , Tandem Mass Spectrometry/methods , Humans , Proteins/analysis , Proteins/chemistry
17.
Res Sq ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798660

ABSTRACT

Alzheimer's disease (AD) is a progressive form of dementia affecting almost 55 million people worldwide. It is characterized by the abnormal deposition of amyloid plaques and neurofibrillary tangles within the brain, leading to a pathological cascade of neuron degeneration and death as well as memory loss and cognitive decline. Amyloid beta (Aß) is an AD biomarker present in cerebrospinal fluid and blood serum and correlates with the presence of amyloid plaques and tau tangles in the brain. Measuring the levels of Aß can help with early diagnosis of AD, which is key for studying novel AD drugs and delaying the symptoms of dementia. However, this goal is difficult to achieve due to the low levels of AD biomarkers in biofluids. Here we demonstrate for the first time the use of FLOWER (frequency locked optical whispering evanescent resonator) for quantifying the levels of post-mortem cerebrospinal fluid (CSF) Aß42 in clinicopathologically classified control, mild cognitive impairment (MCI), and AD participants. FLOWER is capable of measuring CSF Aß42 (area under curve, AUC = 0.92) with higher diagnostic performance than standard ELISA (AUC = 0.82) and was also able to distinguish between control and MCI samples. Our results demonstrate the capability of FLOWER for screening CSF samples for early diagnosis of Alzheimer's pathology.

18.
Mov Disord Clin Pract ; 11(7): 874-878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757351

ABSTRACT

BACKGROUND: The G2019S leucine-rich repeat kinase 2 (LRRK2) gene mutation is an important and commonly found genetic determinant of Parkinson's disease (PD). The neuropathological findings associated with this mutation have thus far been varied but are most often associated with Lewy body (LB) pathology. OBJECTIVE: Describe a case of clinical Parkinson's disease with levodopa responsiveness found to have LRRK2 mutations and the absence of Lewy bodies. METHOD: We present an 89-year-old man with a 10-year history of slowly progressive parkinsonism suspected to be secondary to Parkinson's disease. RESULTS: Neuropathological evaluation revealed nigral degeneration without Lewy bodies or Lewy neurites, but there were frequent tau-immunopositive neurites and astrocytes in the putamen and substantia nigra, neocortical glial tau positive astrocytes associated with aging-related tau astrogliopathy (ARTAG), as well as neurofibrillary tangles, beta amyloid plaques, and amyloid angiopathy typical of advanced Alzheimer's disease. G2019S LRRK2 homozygous mutations were found. CONCLUSION: This case illustrates that levodopa-responsive clinical PD caused by G2019S LRRK2 mutations can occur without Lewy bodies.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Lewy Bodies , Mutation , Parkinson Disease , Protein Serine-Threonine Kinases , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Parkinson Disease/genetics , Parkinson Disease/pathology , Aged, 80 and over , Lewy Bodies/pathology , Lewy Bodies/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Levodopa/therapeutic use
19.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712030

ABSTRACT

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

20.
Neurobiol Dis ; 196: 106514, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663633

ABSTRACT

The olfactory bulb is involved early in the pathophysiology of Parkinson's disease (PD), which is consistent with the early onset of olfactory dysfunction. Identifying the molecular mechanisms through which PD affects the olfactory bulb could lead to a better understanding of the pathophysiology and etiology of olfactory dysfunction in PD. We specifically aimed to assess gene expression changes, affected pathways and co-expression network by whole transcriptomic profiling of the olfactory bulb in subjects with clinicopathologically defined PD. Bulk RNA sequencing was performed on frozen human olfactory bulbs of 20 PD and 20 controls without dementia or any other neurodegenerative disorder, from the Arizona Study of Aging and Neurodegenerative disorders and the Brain and Body Donation Program. Differential expression analysis (19 PD vs 19 controls) revealed 2164 significantly differentially expressed genes (1090 upregulated and 1074 downregulated) in PD. Pathways enriched in downregulated genes included oxidative phosphorylation, olfactory transduction, metabolic pathways, and neurotransmitters synapses while immune and inflammatory responses as well as cellular death related pathways were enriched within upregulated genes. An overrepresentation of microglial and astrocyte-related genes was observed amongst upregulated genes, and excitatory neuron-related genes were overrepresented amongst downregulated genes. Co-expression network analysis revealed significant modules highly correlated with PD and olfactory dysfunction that were found to be involved in the MAPK signaling pathway, cytokine-cytokine receptor interaction, cholinergic synapse, and metabolic pathways. LAIR1 (leukocyte associated immunoglobulin like receptor 1) and PPARA (peroxisome proliferator activated receptor alpha) were identified as hub genes with a high discriminative power between PD and controls reinforcing an important role of neuroinflammation in the olfactory bulb of PD subjects. Olfactory identification test score positively correlated with expression of genes coding for G-coupled protein, glutamatergic, GABAergic, and cholinergic receptor proteins and negatively correlated with genes for proteins expressed in glial olfactory ensheathing cells. In conclusion, this study reveals gene alterations associated with neuroinflammation, neurotransmitter dysfunction, and disruptions of factors involved in the initiation of olfactory transduction signaling that may be involved in PD-related olfactory dysfunction.


Subject(s)
Olfaction Disorders , Olfactory Bulb , Parkinson Disease , Sequence Analysis, RNA , Humans , Olfactory Bulb/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Male , Olfaction Disorders/genetics , Female , Aged , Sequence Analysis, RNA/methods , Middle Aged , Aged, 80 and over , Gene Expression Profiling/methods , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL