Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
iScience ; 27(6): 110028, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868207

ABSTRACT

Developing active and stable catalysts for carbon-free hydrogen production is crucial to mitigate the effects of climate change. Ammonia is a promising carbon-free hydrogen source, as it has a high hydrogen content and is liquid at low pressure, which allows its easy storage and transportation. We have recently developed a nickel-based catalyst with a small content of ruthenium supported on cerium oxide, which exhibits high activity and stability in ammonia decomposition. Here, we investigate mechanochemical milling for its synthesis, a faster and less energy-consuming technique than conventional ones. Results indicate that mechanochemical synthesis increases catalytic activity compared to the conventional incipient wetness impregnation method. The interaction between the metal precursors and the support is key in fine-tuning catalytic activity, which increases linearly with oxygen vacancies in the support. Moreover, the mechanochemical method modifies the oxidation state of Ni and Ru species, with a variation depending on the precursors.

2.
J Physiol Biochem ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787512

ABSTRACT

Olive oil is the main source of lipid energy in the Mediterranean diet and there is strong evidence of its health benefits. The effect of extra virgin olive oil (EVOO) in the form of a preparation of spreadable virgin olive oil (S-VO) on the progression of atheroma plaques was investigated in Apoe-deficient mice, a model of accelerated atherosclerosis. METHODS: Two isocaloric Western purified diets containing 20% fat, either as S-VO or as dairy butter, were used to feed 28 males and 16 females of two-month-old Apoe-deficient mice for 12 weeks. S-VO was prepared by blending more than 75% virgin olive oil with other vegetal natural fat to obtain a solid fat. Plasma total cholesterol, triglycerides and HDL cholesterol were measured. Hepatic lipid droplets were analyzed. Areas of atherosclerotic aortic lesions were quantified in cross-sectional images of the proximal aorta and en face analysis of the whole aorta. RESULTS: Total plasma cholesterol was increased in mice on the butter-supplemented diet in both female and male mice compared to S-VO, and the ratio of TC/HDL-cholesterol was significantly lower in S-VO than in the butter diet, although only in males, and no differences in plasma triglycerides were observed. No significant differences in hepatic lipid droplets were observed between diets in either sex. Aortic lesion areas were significantly higher in mice consuming the butter versus the S-VO diet in both sexes. CONCLUSION: Extra virgin olive oil prepared in spreadable form maintained the delay in atheroma plaque progression compared to butter.

3.
Nat Ecol Evol ; 8(5): 1021-1034, 2024 May.
Article in English | MEDLINE | ID: mdl-38361161

ABSTRACT

Mitochondrial genomes co-evolve with the nuclear genome over evolutionary timescales and are shaped by selection in the female germline. Here we investigate how mismatching between nuclear and mitochondrial ancestry impacts the somatic evolution of the mitochondrial genome in different tissues throughout ageing. We used ultrasensitive duplex sequencing to profile ~2.5 million mitochondrial genomes across five mitochondrial haplotypes and three tissues in young and aged mice, cataloguing ~1.2 million mitochondrial somatic and ultralow-frequency inherited mutations, of which 81,097 are unique. We identify haplotype-specific mutational patterns and several mutational hotspots, including at the light strand origin of replication, which consistently exhibits the highest mutation frequency. We show that rodents exhibit a distinct mitochondrial somatic mutational spectrum compared with primates with a surfeit of reactive oxygen species-associated G > T/C > A mutations, and that somatic mutations in protein-coding genes exhibit signatures of negative selection. Lastly, we identify an extensive enrichment in somatic reversion mutations that 're-align' mito-nuclear ancestry within an organism's lifespan. Together, our findings demonstrate that mitochondrial genomes are a dynamically evolving subcellular population shaped by somatic mutation and selection throughout organismal lifetimes.


Subject(s)
Aging , Genome, Mitochondrial , Haplotypes , Mutation , Selection, Genetic , Animals , Aging/genetics , Mice , DNA, Mitochondrial/genetics , Cell Nucleus/genetics , Female , Mitochondria/genetics , Mice, Inbred C57BL , Male
4.
Food Res Int ; 174(Pt 1): 113595, 2023 12.
Article in English | MEDLINE | ID: mdl-37986458

ABSTRACT

The health benefits of curcumin have been demonstrated by several clinical studies, but its low bioavailability compromises its functionality. In this regard, emulsions have proven to be effective encapsulation systems for curcumin. Nevertheless, emulsions with a high oil content (50%) may offer some advantages due to the large amount of compound they can incorporate. Therefore, the aim of this work was to study the pharmacokinetics and biodistribution of curcumin when carried in optimized emulsions containing 50% MCT oil and a plant-based emulsifier (soybean lecithin) at 2 h or 4 h post-oral administration to rats. The most stable emulsion was obtained using 50% of oil and a surfactant-oil-ratio 0.1, through a microfluidization process. After the oral administration of the systems (150 mg curcumin/kg body weight), curcumin glucuronide was the main compound present in plasma (AUC0-t = 1556.3 ng·h·ml-1), especially at 2-4 h post-administration. The total curcuminoid bioavailability was increased by 10.6-fold when rats were fed with the curcumin emulsion rather than with a control suspension. Moreover, rats fed with the emulsion showed the highest accumulation of free curcuminoids, which present the highest biological activity, in the liver (129 ng curcumin/g tissue) and brown adipose tissue (193 ng curcumin/g tissue). The obtained results are of great interest since the presence of curcumin in the brown adipose tissue has been shown to play a relevant role in the prevention of obesity and its related metabolic disorders.


Subject(s)
Curcumin , Rats , Animals , Emulsions , Tissue Distribution , Emulsifying Agents , Diarylheptanoids , Triglycerides
5.
Antioxidants (Basel) ; 12(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37237901

ABSTRACT

Rosehips, particularly dog rose fruits (Rosa canina L.), are a great source of antioxidant compounds, mainly phenolics. However, their health benefits directly depend on the bioaccessibility of these compounds affected by gastrointestinal digestion. Thus, the purpose of this research was to study the impact of gastrointestinal and colonic in vitro digestions on the concentration of total and individual bioaccessible phenolic compounds from a hydroalcoholic extract of rosehips (Rosa canina) and also their antioxidant capacity. A total of 34 phenolic compounds were detected in the extracts using UPLC-MS/MS. Ellagic acid, taxifolin, and catechin were the most abundant compounds in the free fraction, while gallic and p-coumaric acids were the main compounds in the bound phenolic fraction. Gastric digestion negatively affected the content of free phenolic compounds and the antioxidant activity measured using the DPPH radical method. However, there was an enhancement of antioxidant properties in terms of phenolic content and antioxidant activity (DPPH (2,2-diphenyl-1-picrylhydrazyl): 18.01 ± 4.22 mmol Trolox Equivalent (TE)/g; FRAP (Ferric Reducing Antioxidant Power): 7.84 ± 1.83 mmol TE/g) after the intestinal stage. The most bioaccessible phenolic compounds were flavonols (73.3%) and flavan-3-ols (71.4%). However, the bioaccessibility of phenolic acids was 3%, probably indicating that most of the phenolic acids were still bound to other components of the extract. Ellagic acid is an exception since it presented a high bioaccessibility (93%) as it was mainly found in the free fraction of the extract. Total phenolic content decreased after in vitro colonic digestion, probably due to chemical transformations of the phenolic compounds by gut microbiota. These results demonstrated that rosehip extracts have a great potential to be used as a functional ingredient.

6.
ACS Appl Nano Mater ; 6(9): 7173-7185, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37205295

ABSTRACT

Ni-Fe nanocatalysts supported on CeO2 have been prepared for the catalysis of methane steam reforming (MSR) aiming for coke-resistant noble metal-free catalysts. The catalysts have been synthesized by traditional incipient wetness impregnation as well as dry ball milling, a green and more sustainable preparation method. The impact of the synthesis method on the catalytic performance and the catalysts' nanostructure has been investigated. The influence of Fe addition has been addressed as well. The reducibility and the electronic and crystalline structure of Ni and Ni-Fe mono- and bimetallic catalysts have been characterized by temperature programmed reduction (H2-TPR), in situ synchrotron X-ray diffraction (SXRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Their catalytic activity was tested between 700 and 950 °C at 108 L gcat-1 h-1 and with the reactant flow varying between 54 and 415 L gcat-1 h-1 at 700 °C. Hydrogen production rates of 67 mol gmet-1 h-1 have been achieved. The performance of the ball-milled Fe0.1Ni0.9/CeO2 catalyst was similar to that of Ni/CeO2 at high temperatures, but Raman spectroscopy revealed a higher amount of highly defective carbon on the surface of Ni-Fe nanocatalysts. The reorganization of the surface under MSR of the ball-milled NiFe/CeO2 has been monitored by in situ near-ambient pressure XPS experiments, where a strong reorganization of the Ni-Fe nanoparticles with segregation of Fe toward the surface has been observed. Despite the catalytic activity being lower in the low-temperature regime, Fe addition for the milled nanocatalyst increased the coke resistance and could be an efficient alternative to industrial Ni/Al2O3 catalysts.

7.
Foods ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37048323

ABSTRACT

In recent years, the trend in the population towards consuming more natural and sustainable foods has increased significantly. This claim has led to the search for new sources of bioactive compounds and extraction methods that have less impact on the environment. Moreover, the formulation of systems to protect these compounds is also focusing on the use of ingredients of natural origin. This article reviews novel, natural alternative sources of bioactive compounds with a positive impact on sustainability. In addition, it also contains information on the most recent studies based on the use of natural (especially from plants) emulsifiers in the design of emulsion-based delivery systems to protect bioactive compounds. The properties of these natural-based emulsion-delivery systems, as well as their functionality, including in vitro and in vivo studies, are also discussed. This review provides relevant information on the latest advances in the development of emulsion delivery systems based on ingredients from sustainable natural sources.

8.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-36945529

ABSTRACT

Mitochondrial genomes co-evolve with the nuclear genome over evolutionary timescales and are shaped by selection in the female germline. Here, we investigate how mismatching between nuclear and mitochondrial ancestry impacts the somatic evolution of the mt-genome in different tissues throughout aging. We used ultra-sensitive Duplex Sequencing to profile ~2.5 million mt-genomes across five mitochondrial haplotypes and three tissues in young and aged mice, cataloging ~1.2 million mitochondrial somatic and ultra low frequency inherited mutations, of which 81,097 are unique. We identify haplotype-specific mutational patterns and several mutational hotspots, including at the Light Strand Origin of Replication, which consistently exhibits the highest mutation frequency. We show that rodents exhibit a distinct mitochondrial somatic mutational spectrum compared to primates with a surfeit of reactive oxygen species-associated G>T/C>A mutations, and that somatic mutations in protein coding genes exhibit signatures of negative selection. Lastly, we identify an extensive enrichment in somatic reversion mutations that "re-align" mito-nuclear ancestry within an organism's lifespan. Together, our findings demonstrate that mitochondrial genomes are a dynamically evolving subcellular population shaped by somatic mutation and selection throughout organismal lifetimes.

9.
Vox Sang ; 118(4): 296-300, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36734378

ABSTRACT

BACKGROUND AND OBJECTIVES: There is a concern about a possible deleterious effect of pathogen reduction (PR) with methylene blue (MB) on the function of immunoglobulins of COVID-19 convalescent plasma (CCP). We have evaluated whether MB-treated CCP is associated with a poorer clinical response compared to other inactivation systems at the ConPlas-19 clinical trial. MATERIALS AND METHODS: This was an ad hoc sub-study of the ConPlas-19 clinical trial comparing the proportion of patients transfused with MB-treated CCP who had a worsening of respiration versus those treated with amotosalen (AM) or riboflavin (RB). RESULTS: One-hundred and seventy-five inpatients with SARS-CoV-2 pneumonia were transfused with a single CCP unit. The inactivation system of the CCP units transfused was MB in 90 patients (51.4%), RB in 60 (34.3%) and AM in 25 (14.3%). Five out of 90 patients (5.6%) transfused with MB-treated CCP had worsening respiration compared to 9 out of 85 patients (10.6%) treated with alternative PR methods (p = 0.220). Of note, MB showed a trend towards a lower rate of respiratory progressions at 28 days (risk ratio, 0.52; 95% confidence interval, 0.18-1.50). CONCLUSION: Our data suggest that MB-treated CCP does not provide a worse clinical outcome compared to the other PR methods for the treatment of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19 Serotherapy , Immunization, Passive/methods , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , SARS-CoV-2 , Treatment Outcome
10.
Food Res Int ; 164: 112359, 2023 02.
Article in English | MEDLINE | ID: mdl-36737947

ABSTRACT

The use of microalgae as a source of bioactive compounds has gained interest since they present advantages vs higher plants. Among them, Dunaliella salina is one of the best sources of natural ß-carotene, which is the precursor of vitamin A. However, ß-carotene shows reduced oral bioavailability due to its chemical degradation and poor absorption. The work aimed to evaluate the influence of the emulsifier and oil concentration on the digestive stability of Dunaliella Salina-based nanoemulsions and study their influence on the digestibility and the ß-carotene bioaccessibility. In addition, the effect of the emulsifier nature on the absorption of ß-carotene and its conversion to retinol in vivo was also investigated. Results showed that the coalescence observed in soybean lecithin nanoemulsion during the gastrointestinal digestion reduced the digestibility and ß-carotene bioaccessibility. In contrast, whey protein nanoemulsion that showed aggregation in the gastric phase could be redispersed in the intestinal phase facilitating the digestibility and bioaccessibility of the compound. In vivo results confirmed that whey protein nanoemulsion increased the bioavailability of retinol to a higher extent (Cmax 685 ng/mL) than soybean lecithin nanoemulsion (Cmax 394 ng/mL), because of an enhanced ß-carotene absorption.


Subject(s)
Vitamin A , beta Carotene , beta Carotene/chemistry , Vitamin A/metabolism , Biological Availability , Lecithins , Whey Proteins/metabolism , Emulsions/chemistry , Emulsifying Agents/chemistry
11.
Mol Nutr Food Res ; 67(6): e2200492, 2023 03.
Article in English | MEDLINE | ID: mdl-36708270

ABSTRACT

SCOPE: Microalgae such as Dunaliella salina are a potential sustainable source of natural ß-carotene due to their fast growth and high adaptability to environmental conditions. This work aims to evaluate the effect of the incorporation of ß-carotene from this alga into different emulsifier-type nanoemulsions (soybean lecithin [SBL], whey protein isolate [WPI], sodium caseinate [SDC]) on its absorption, metabolization, and biodistribution in rats. METHODS AND RESULTS: Nanoemulsions formulated with different emulsifiers at 8% concentration are obtained by five cycles of microfluidization at 130 mPa, then expose to an in vitro digestion or orally administer to rats. Feeding rats with nanoemulsions improves ß-carotene uptake compared to control suspension, especially using SDC and WPI as emulsifiers. A greater presence of ß-carotene and retinol in the intestine, plasma, and liver is observed, being the liver the tissue that shows the highest accumulation. This fact can be a consequence of the smaller droplets that protein-nanoemulsions present compared to that with SBL in the intestine of rats, which promote faster digestibility and higher ß-carotene bioaccessibility (35%-50% more) according to the in vitro observations. CONCLUSIONS: Nanoemulsions, especially those formulated with protein emulsifiers, are effective systems for increasing ß-carotene absorption, as well as retinol concentration in different rat tissues.


Subject(s)
Vitamin A , beta Carotene , Rats , Animals , Vitamin A/metabolism , Tissue Distribution , Emulsifying Agents , Emulsions
12.
Foods ; 11(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36360010

ABSTRACT

The social, environmental and health concerns associated with the massive consumption of meat products has resulted in calls for a reduction in meat consumption. A simplex lattice design was used for studying the effect of combining broccoli, upcycled brewer's spent grain (BSG) and insect flours from Tenebrio molitor (IF) as alternative sources of protein and micronutrients, in hybrid sausages formulation. The techno-functional properties of the ingredients and the nutritional and textural properties of nine hybrid sausages were analysed. The effect of adding these ingredients (constituting 35% of a turkey-based sausage) on protein, fat, fibre, iron and zinc content, and textural properties (Texture Profile Analysis (TPA) and Warner−Bratzler parameters) were modelled employing linear regression (0.72 < R2 < 1). The "desirability" function was used for multi-response optimisation of the samples for the highest protein content, optimum chewiness and a* value (closeness to red). The analysis of sensory data for the three optimised samples showed no significant differences in juiciness and odour between the hybrid meat sausage with 22% broccoli, 3% BSG, and 10% IF and the commercial Bratwurst sausage elaborated exclusively with animal protein. Colour, appearance, chewiness and pastiness were rated higher than for the reference. The instrumental chewiness highly correlated with sensorial chewiness (R2 = 0.98). Thus, a strategy introducing less refined and more sustainable sources of protein and micronutrients was successfully employed to model and statistically optimise a meat product formulation with reduced animal protein content.

14.
Eur J Contracept Reprod Health Care ; 27(6): 494-503, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36256517

ABSTRACT

PURPOSE: To explore the perceived need and enthusiasm for over the counter (OTC) progestogen-only pills (POP). MATERIALS AND METHODS: A web-based survey of 1000 sexually active women (16-45) and 100 pharmacists in Germany, Italy and Spain. RESULTS: Despite not wanting to conceive, 5-6% of women in each country were not using contraception and 8-20% were using methods less effective than condoms. At least 74% of respondents felt knowledgeable about the different contraceptives available but at least 1/3 had experienced difficulty accessing oral contraceptive (OCs) in the past two years. The cost of contraceptives, the need to see a doctor and long waits for appointments were cited as barriers for not using OCs. The majority agreed they would discuss with their doctor the decision to buy the POP, consult about side effects and other reproductive health issues. Over 2/3 of pharmacists in each country would be very, or fairly, likely to recommend the POP, agreeing that the benefits included improved access for women, and offered them more independence. CONCLUSIONS: Asked directly, women in Germany, Spain and Italy currently using contraception are positive about a POP OTC. Pharmacists are also positive, with the overwhelming majority in favour of providing POPs.


Subject(s)
Pharmacists , Progestins , Female , Humans , Spain , Contraceptives, Oral , Germany , Nonprescription Drugs , Surveys and Questionnaires , Italy
16.
Foods ; 11(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36076764

ABSTRACT

The agro-food industry generates a large volume of by-products, whose revaluation is essential for the circular economy. From these by-products, dietary fibre concentrates (DFCs) can be obtained. Therefore, the objective of this study was to characterise (a) the proximal composition by analysing soluble, insoluble and total Dietary Fibre (DF), (b) the physicochemical properties, and (c) the phenolic profile of artichoke, red pepper, carrot, and cucumber DFCs. In addition, the bioaccessibility of phenolic compounds was also evaluated after in vitro gastrointestinal and colonic digestions. The results showed that the DFCs had more than 30 g/100 g dw. The water holding and retention capacity of the DFCs ranges from 9.4 to 18.7 g of water/g. Artichoke DFC presented high concentration of phenolic compounds (8340.7 mg/kg) compared to the red pepper (304.4 mg/kg), carrot (217.4 mg/kg) and cucumber DFCs (195.7 mg/kg). During in vitro gastrointestinal digestion, soluble phenolic compounds were released from the food matrix, chlorogenic acid, the principal compound in artichoke and carrot DFCs, and hesperetin-7-rutinoside in red pepper cucumber DFCs. Total phenolic content decreased after in vitro colonic digestion hence the chemical transformation of the phenolic compounds by gut microbiota. Based on the results, DFCs could be good functional ingredients to develop DF-enriched food, reducing food waste.

17.
Nat Commun ; 13(1): 5080, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038555

ABSTRACT

Efficiently treating methane emissions in transportation remains a challenge. Here, we investigate palladium and platinum mono- and bimetallic ceria-supported catalysts synthesized by mechanical milling and by traditional impregnation for methane total oxidation under dry and wet conditions, reproducing those present in the exhaust of natural gas vehicles. By applying a toolkit of in situ synchrotron techniques (X-ray diffraction, X-ray absorption and ambient pressure photoelectron spectroscopies), together with transmission electron microscopy, we show that the synthesis method greatly influences the interaction and structure at the nanoscale. Our results reveal that the components of milled catalysts have a higher ability to transform metallic Pd into Pd oxide species strongly interacting with the support, and achieve a modulated PdO/Pd ratio than traditionally-synthesized catalysts. We demonstrate that the unique structures attained by milling are key for the catalytic activity and correlate with higher methane conversion and longer stability in the wet feed.

18.
Front Cardiovasc Med ; 9: 861651, 2022.
Article in English | MEDLINE | ID: mdl-35463785

ABSTRACT

Introduction: Galectin-3 (Gal-3) is an inflammatory marker associated with the development and progression of heart failure (HF). A close relationship between Gal-3 levels and renal function has been observed, but data on their interaction in patients with acute HF (AHF) are scarce. We aim to assess the prognostic relationship between renal function and Gal-3 during an AHF episode. Materials and Methods: This is an observational, prospective, multicenter registry of patients hospitalized for AHF. Patients were divided into two groups according to estimated glomerular filtration rate (eGFR): preserved renal function (eGFR ≥ 60 mL/min/1.73 m2) and renal dysfunction (eGFR <60 mL/min/1.73 m2). Cox regression analysis was performed to evaluate the association between Gal-3 and 12-month mortality. Results: We included 1,201 patients in whom Gal-3 values were assessed at admission. The median value of Gal-3 in our population was 23.2 ng/mL (17.3-32.1). Gal-3 showed a negative correlation with eGFR (rho = -0.51; p < 0.001). Gal-3 concentrations were associated with higher mortality risk in the multivariate analysis after adjusting for eGFR and other prognostic variables [HR = 1.010 (95%-CI: 1.001-1.018); p = 0.038]. However, the prognostic value of Gal-3 was restricted to patients with renal dysfunction [HR = 1.010 (95%-CI: 1.001-1.019), p = 0.033] with optimal cutoff point of 31.5 ng/mL, with no prognostic value in the group with preserved renal function [HR = 0.990 (95%-CI: 0.964-1.017); p = 0.472]. Conclusions: Gal-3 is a marker of high mortality in patients with acute HF and renal dysfunction. Renal function influences the prognostic value of Gal-3 levels, which should be adjusted by eGFR for a correct interpretation.

19.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613938

ABSTRACT

Curcumin presents interesting biological activities but low chemical stability, so it has been incorporated into different emulsion-based systems in order to increase its bioaccessibility. Many strategies are being investigated to increase the stability of these systems. Among them, the use of polysaccharides has been seen to highly improve the emulsion stability but also to modulate their digestibility and the release of the encapsulated compounds. However, the effect of these polysaccharides on nanoemulsions depends on the presence of other components. Then, this work aimed to study the effect of alginate addition at different concentrations (0-1.5%) on the gastrointestinal fate and stability of curcumin-loaded nanoemulsions formulated using soybean lecithin or whey protein as emulsifiers. Results showed that, in the absence of polysaccharides, whey protein was more effective than lecithin in preventing curcumin degradation during digestion and its use also provided greater lipid digestibility and higher curcumin bioaccessibility. The addition of alginate, especially at ≥1%, greatly prevented curcumin degradation during digestion up to 23% and improved the stability of nanoemulsions over time. However, it reduced lipid digestibility and curcumin bioaccessibility. Our results provide relevant information on the use of alginate on different emulsifier-based nanoemulsions to act as carriers of curcumin.


Subject(s)
Curcumin , Emulsions/chemistry , Curcumin/chemistry , Lecithins , Alginates , Whey Proteins/chemistry , Emulsifying Agents/chemistry , Biological Availability
20.
Foods ; 9(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272575

ABSTRACT

The intestinal absorption of lipophilic compounds such as ß-carotene has been reported to increase when they are incorporated in emulsion-based delivery systems. Moreover, the reduction of emulsions particle size and the addition of biopolymers in the systems seems to play an important role in the emulsion properties but also in their behavior under gastrointestinal conditions and the absorption of the encapsulated compound in the intestine. Hence, the present study aimed to evaluate the effect of pectin addition (0%, 1%, and 2%) on the physicochemical stability of oil-in-water nanoemulsions containing ß-carotene during 35 days at 4 °C, the oil digestibility and the compound bioaccessibility. The results showed that nanoemulsions presented greater stability and lower ß-carotene degradation over time in comparison with coarse emulsion, which was further reduced with the addition of pectin. Moreover, nanoemulsions presented a faster digestibility irrespective of the pectin concentration used and a higher ß-carotene bioaccessibility as the pectin concentration increased, being the maximum of ≈36% in nanoemulsion with 2% of pectin. These results highlight the potential of adding pectin to ß-carotene nanoemulsions to enhance their functionality by efficiently preventing the compound degradation and increasing the in vitro bioaccessibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...