Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 9(10): 5473-83, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20804217

ABSTRACT

CIGB-300 is a proapoptotic peptide-based drug that abrogates the CK2-mediated phosphorylation. This peptide has antineoplastic effect on lung cancer cells in vitro and in vivo. To understand the mechanisms involved on such anticancer activity, the NCI-H125 cell line proteomic profile after short-term incubation (45 min) with CIGB-300 was investigated. As determined by 2-DE or 2D-LC-MS/MS, 137 proteins changed their abundances more than 2-fold in response to the CIGB-300 treatment. The expression levels of proteins related to ribosome biogenesis, metastasis, cell survival and proliferation, apoptosis, and drug resistance were significantly modulated by the presence of CIGB-300. The protein translation process was the most affected (23% of the identified proteins). From the proteome analysis of the NCI-H125 cell line, novel potentialities for CIGB-300 as anticancer agent were evidenced.


Subject(s)
Peptides, Cyclic/pharmacology , Protein Biosynthesis/drug effects , Proteome/analysis , Proteomics/methods , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromatography, Liquid , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mass Spectrometry , Proteome/classification
2.
Mol Cell Biochem ; 316(1-2): 163-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18575815

ABSTRACT

Protein Kinase CK2 is a serine-threonine kinase frequently deregulated in many human tumors. Here, we hypothesized that a peptide binder to the CK2 phosphoacceptor site could exhibit anticancer properties in vitro, in tumor animal models, and in cancer patients. By screening a random cyclic peptide phage display library, we identified the CIGB-300 (formerly P15-Tat), a cyclic peptide which abrogates the CK2 phosphorylation by blocking recombinant substrates in vitro. Interestingly, synthetic CIGB-300 led to a dose-dependent antiproliferative effect in a variety of tumor cell lines and induced apoptosis as evidenced by rapid caspase activation. Importantly, CIGB-300 elicited significant antitumor effect both by local and systemic administration in murine syngenic tumors and human tumors xenografted in nude mice. Finally, we performed a First-in-Man trial with CIGB 300 in patients with cervical malignancies. The peptide was found to be safe and well tolerated in the dose range studied. Likewise, signs of clinical benefit were clearly identified after the CIGB-300 treatment as evidenced by significant decrease of the tumor lesion area and histological examination. Our results provide an early proof-of-principle of clinical benefit by using an anti-CK2 approach in cancer. Furthermore, this is the first clinical trial where an investigational drug has been used to target the CK2 phosphorylation domain.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Casein Kinase II/metabolism , Peptides, Cyclic/pharmacology , Animals , Antineoplastic Agents/adverse effects , Biological Assay , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Mice , Mice, Nude , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins , Peptides, Cyclic/adverse effects , Phosphorylation/drug effects , Proteome/analysis , Xenograft Model Antitumor Assays
3.
Int J Cancer ; 122(1): 57-62, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17847034

ABSTRACT

The antitumor efficacy of the CK2 inhibitors so far described has not been extensively evaluated in cancer animal models. We have previously demonstrated that a proapoptotic cyclic peptide termed P15 delivered into the cells by the Tat Cell Penetrating Peptide was able to abrogate the CK2-mediated phosphorylation and induce tumor regression when injected directly into solid tumors in mice. Here we explored the antitumor effect by systemic administration of P15-Tat in a consecutive 5-day schedule through either intraperitoneal or intravenous route. Importantly, significant delay of tumor growth was observed at 2 mg/kg (p < 0.05), 10 mg/kg (p < 0.01) or 40 mg/kg (p < 0.001) after P15-Tat administration both in syngeneic murine tumors and human tumors xenografted in nude mice. In line with this, the systemic administration of P15-Tat induced apoptosis in the tumor as evidenced by in situ DNA fragmentation. Furthermore, we evidenced that 99mTc-labeled P15-Tat peptide was certainly accumulated on the tumors after administration by both routes. This report becomes the first describing the antitumor effect induced by systemic administration of a peptide that targets the acidic phosphorylation domain for CK2 substrates. Also, our data reinforces the perspectives of P15-Tat for the cancer targeted therapy.


Subject(s)
Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Casein Kinase II/metabolism , Cyclin-Dependent Kinase Inhibitor p15/pharmacology , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/enzymology , Cell Line, Tumor , Female , Gene Products, tat/genetics , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/therapy , Mice , Mice, Inbred C57BL , Mice, Nude , Peptides, Cyclic/pharmacology , Phosphorylation/drug effects , Tissue Distribution , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...