Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(27): e2306424, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38251224

ABSTRACT

In this work, a new method of multi-material printing in one-go using a commercially available 3D printer is presented. The approach is simple and versatile, allowing the manufacturing of multi-material layered or multi-material printing in the same layer. To the best of the knowledge, it is the first time that 3D printed Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) micro-patterns combining different materials are reported, overcoming mechanical stability issues. Moreover, the conducting ink is engineered to obtain stable in-time materials while retaining sub-100 µm resolution. Micro-structured bio-shaped protuberances are designed and 3D printed as electrodes for electrophysiology. Moreover, these microstructures are combined with polymerizable deep eutectic solvents (polyDES) as functional additives, gaining adhesion and ionic conductivity. As a result of the novel electrodes, low skin impedance values showed suitable performance for electromyography recording on the forearm. Finally, this concluded that the use of polyDES conferred stability over time, allowing the usability of the electrode 90 days after fabrication without losing its performance. All in all, this demonstrated a very easy-to-make procedure that allows printing PEDOT:PSS on soft, hard, and/or flexible functional substrates, opening up a new paradigm in the manufacturing of conducting multi-functional materials for the field of bioelectronics and wearables.

2.
ACS Mater Lett ; 5(12): 3340-3346, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38075386

ABSTRACT

Underwater recording remains a critical challenge in bioelectronics because traditional flexible electrodes can not fulfill essential requirements such as stability and steady conductivity in aquatic environments. Herein, we show the use of elastic gels made of hydrophobic natural eutectic solvents as water-resistant electrodes. These eutectogels are designed with tailorable mechanical properties via one-step photopolymerization of acrylic monomers in different eutectic mixtures composed of fatty acids and menthol. The low viscosity of the eutectics turns the formulations into suitable inks for 3D printing, allowing fast manufacturing of complex objects. Furthermore, the hydrophobic nature of the building blocks endows the eutectogels with excellent stability and low water uptake. The obtained flexible eutectogel electrodes can record real-time electromyography (EMG) signals with low interference in the air and underwater.

3.
Adv Sci (Weinh) ; : e2301176, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203308

ABSTRACT

Electrocardiography imaging (ECGi) is a non-invasive inverse reconstruction procedure which employs body surface potential maps (BSPM) obtained from surface electrode array measurements to improve the spatial resolution and interpretability of conventional electrocardiography (ECG) for the diagnosis of cardiac dysfunction. ECGi currently lacks precision, which has prevented its adoption in clinical setups. The introduction of high-density electrode arrays could increase ECGi reconstruction accuracy but is not attempted before due to manufacturing and processing limitations. Advances in multiple fields have now enabled the implementation of such arrays which poses questions on optimal array design parameters for ECGi. In this work, a novel conducting polymer electrode manufacturing process on flexible substrates is proposed to achieve high-density, mm-sized, conformable, long-term, and easily attachable electrode arrays for BSPM with parameters optimally selected for ECGi applications. Temporal, spectral, and correlation analysis are performed on a prototype array demonstrating the validity of the chosen parameters and the feasibility of high-density BSPM, paving the way for ECGi devices fit for clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL
...