Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200582

ABSTRACT

Ouabain is a cardiac glycoside that has been described as a hormone, with interesting effects on epithelial physiology. We have shown previously that ouabain induces gap junctional intercellular communication (GJIC) in wild, sensitive cells (MDCK-S), but not in cells that have become insensitive (MDCK-I) by modifying their Na+-K+-ATPase. We have also demonstrated that prostaglandin E2 (PGE2) is able to induce increased GJIC by a mechanism other than ouabain, that does not depend on Na+-K+-ATPase. In this work we show, by dye transfer assays, that when MDCK-S and MDCK-I are randomly mixed, to form monolayers, the latter stablish GJIC, because of stimulation by a compound released to the extracellular media, by MDCK-S cells, after treatment with ouabain, as evidenced by the fact that monolayers of only MDCK-I cells, treated with a conditioned medium (CM) that is obtained after incubation of MDCK-S monolayers with ouabain, significantly increase their GJIC. The further finding that either (1) pre-treatment with COX-2 inhibitors or (2) addition to CM of antagonists of EP2 receptor abolish CM's ability to induce GJIC in MDCK-I monolayers indicate that PGE2 is the GJIC-inducing compound. Therefore, these results indicate that, in addition to direct stimulation, mediated by Na+-K+-ATPase, ouabain enhances GJIC indirectly through the paracrine production of PGE2.


Subject(s)
Cardiotonic Agents/pharmacology , Dinoprostone/metabolism , Gap Junctions/physiology , Ouabain/pharmacology , Paracrine Communication , Animals , Dogs , Madin Darby Canine Kidney Cells , Signal Transduction
2.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071686

ABSTRACT

Prostaglandins are a group of lipids that produce diverse physiological and pathological effects. Among them, prostaglandin E2 (PGE2) stands out for the wide variety of functions in which it participates. To date, there is little information about the influence of PGE2 on gap junctional intercellular communication (GJIC) in any type of tissue, including epithelia. In this work, we set out to determine whether PGE2 influences GJIC in epithelial cells (MDCK cells). To this end, we performed dye (Lucifer yellow) transfer assays to compare GJIC of MDCK cells treated with PGE2 and untreated cells. Our results indicated that (1) PGE2 induces a statistically significant increase in GJIC from 100 nM and from 15 min after its addition to the medium, (2) such effect does not require the synthesis of new mRNA or proteins subunits but rather trafficking of subunits already synthesized, and (3) such effect is mediated by the E2 receptor, which, in turn, triggers a signaling pathway that includes activation of adenylyl cyclase and protein kinase A (PKA). These results widen the knowledge regarding modulation of gap junctional intercellular communication by prostaglandins.


Subject(s)
Cell Communication/drug effects , Dinoprostone/pharmacology , Epithelial Cells/drug effects , Gap Junctions/drug effects , Adenylyl Cyclases/metabolism , Animals , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dogs , Dose-Response Relationship, Drug , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gap Junctions/metabolism , Madin Darby Canine Kidney Cells , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Signal Transduction/drug effects , Time Factors
3.
Int J Mol Sci ; 22(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396341

ABSTRACT

Gap junctions are molecular structures that allow communication between neighboring cells. It has been shown that gap junctional intercellular communication (GJIC) is notoriously reduced in cancer cells compared to their normal counterparts. Ouabain, a plant derived substance, widely known for its therapeutic properties on the heart, has been shown to play a role in several types of cancer, although its mechanism of action is not yet fully understood. Since we have previously shown that ouabain enhances GJIC in epithelial cells (MDCK), here we probed whether ouabain affects GJIC in a variety of cancer cell lines, including cervico-uterine (CasKi, SiHa and Hela), breast (MDA-MB-321 and MCF7), lung (A549), colon (SW480) and pancreas (HPAF-II). For this purpose, we conducted dye transfer assays to measure and compare GJIC in monolayers of cells with and without treatment with ouabain (0.1, 1, 10, 50 and 500 nM). We found that ouabain induces a statistically significant enhancement of GJIC in all of these cancer cell lines, albeit with distinct sensitivity. Additionally, we show that synthesis of new nucleotides or protein subunits is not required, and that Csrc, ErK1/2 and ROCK-Rho mediate the signaling mechanisms. These results may contribute to explaining how ouabain influences cancer.


Subject(s)
Cardiotonic Agents/pharmacology , Cell Communication , Gap Junctions/drug effects , Neoplasms/pathology , Ouabain/pharmacology , Apoptosis , Cell Proliferation , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...