Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 118(5): 503-509, 2022 11.
Article in English | MEDLINE | ID: mdl-36203248

ABSTRACT

LeuO is a LysR-type transcriptional regulator in bacteria. It determines the regulation of numerous genes related to stress response and virulence. Thus, four exciting areas of research are discussed herein. One pertains the leuO gene, which in S. Typhi and in E. coli contains multiple forward promoters as well as reverse promoters, even though it is expressed at very low levels, that is, it is quiescent. Such multiplicity might allow for a greater plasticity in regulation, or even aid in maintaining the quiescence, in processes that appear to involve many nucleoid-associated proteins in a second area of opportunity. A third one relates to the effector-binding domain of the LeuO regulator, which is highly conserved in S. enterica and in E. coli and determines its activity as a regulator of transcription. A fourth area regards the role of the CRISPR-Cas system in gene regulation in S. Typhi; a system that is regulated by LeuO.


Subject(s)
Escherichia coli Proteins , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Bacterial/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , CRISPR-Cas Systems/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
J Leukoc Biol ; 112(3): 475-490, 2022 09.
Article in English | MEDLINE | ID: mdl-35726707

ABSTRACT

Mycobacterium tuberculosis has developed diverse mechanisms to survive inside phagocytic cells, such as macrophages. Phagocytosis is a key process in eliminating invading pathogens; thus, M. tuberculosis efficiently disrupts phagosome maturation to ensure infection. However, inflammatory cytokines produced by macrophages in response to early M. tuberculosis infection are key to promoting bacterial clarification. IFN-γ enhances M. tuberculosis engulfment and destruction by reprogramming macrophages from phagocytosis to macropinocytosis. Here, we show that the transcription factor Krüppel-like factor 10 (Klf10) plays a positive role in M. tuberculosis survival and infection by negatively modulating IFN-γ levels. Naïve Klf10-deficient macrophages produce more IFN-γ upon stimulation than wild-type macrophages, thus enhancing bacterial uptake and bactericidal activity achieved by macropinocytosis. Moreover, Klf10⁻/ ⁻ macrophages showed cytoplasmic distribution of coronin 1 correlated with increased pseudopod count and length. In agreement with these observations, Klf10⁻/ ⁻ mice showed improved bacterial clearance from the lungs and increased viability. Altogether, our data indicate that Klf10 plays a critical role in M. tuberculosis survival by preventing macrophage reprogramming from phagocytosis to macropinocytosis by negatively regulating IFN-γ production upon macrophage infection.


Subject(s)
Kruppel-Like Transcription Factors , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Animals , Early Growth Response Transcription Factors , Interferon-gamma , Kruppel-Like Transcription Factors/genetics , Macrophages/microbiology , Mice , Phagocytosis , Pinocytosis
3.
Microb Pathog ; 90: 22-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26550764

ABSTRACT

Biofilms of Candida species are associated with high morbidity and hospital mortality. Candida forms biofilms by adhering to human host epithelium through cell wall proteins (CWP) and simultaneously neutralizing the reactive oxygen species (ROS) produced during the respiratory burst by phagocytic cells. The purpose of this paper is to identify the CWP of Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis expressed after exposure to different concentrations of H2O2 using a proteomic approach. CWP obtained from sessile cells, both treated and untreated with the oxidizing agent, were resolved by one and two-dimensional (2D-PAGE) gels and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Some of these proteins were identified and found to correspond to moonlighting CWP such as: (i) glycolytic enzymes, (ii) heat shock, (iii) OSR proteins, (iv) general metabolic enzymes and (v) highly conserved proteins, which are up- or down-regulated in the presence or absence of ROS. We also found that the expression of these CWP is different for each Candida species. Moreover, RT-PCR assays allowed us to demonstrate that transcription of the gene coding for Eno1, one of the moonlight-like CWP identified in response to the oxidant agent, is differentially regulated. To our knowledge this is the first demonstration that, in response to oxidative stress, each species of Candida, differentially regulates the expression of moonlighting CWP, which may protect the organism from the ROS generated during phagocytosis. Presumptively, these proteins allow the pathogen to adhere and form a biofilm, and eventually cause invasive candidiasis in the human host. We propose that, in addition to the antioxidant mechanisms present in Candida, the moonlighting CWP also confer protection to these pathogens from oxidative stress.


Subject(s)
Biofilms , Candida/physiology , Cell Wall/metabolism , Fungal Proteins/metabolism , Membrane Proteins/metabolism , Oxidative Stress/physiology , Antioxidants/metabolism , Biofilms/growth & development , Candida/drug effects , Candida/enzymology , Candida/metabolism , Cell Wall/drug effects , Cell Wall/enzymology , Fungal Proteins/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Heat-Shock Proteins/metabolism , Humans , Hydrogen Peroxide/pharmacology , Membrane Proteins/genetics , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Reactive Oxygen Species/metabolism
4.
Biomed Res Int ; 2015: 783639, 2015.
Article in English | MEDLINE | ID: mdl-25705688

ABSTRACT

The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Culture Media/pharmacology , Oxidative Stress/drug effects , Antifungal Agents/chemistry , Biofilms/drug effects , Culture Media/chemistry , Humans , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Vitamin K 3/chemistry , Vitamin K 3/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...