Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 39(15-16): 1099-1112, 2022 08.
Article in English | MEDLINE | ID: mdl-35297679

ABSTRACT

The inflammatory response associated with traumatic spinal cord injury (SCI) contributes to locomotor and sensory impairments. Pro-inflammatory (M1) macrophages/microglia (MϕMG) are the major cellular players in this response as they promote chronic inflammation resulting in injury expansion and tissue damage. Fatty acid-binding protein 4 (FABP4) promotes M1 MϕMG differentiation; however, it is unknown if FABP4 also plays a role in the etiology of SCI. The present study investigates whether FABP4's gene expression influences functional recovery following SCI. Analysis of quantitative polymerase chain reaction data shows a robust induction of FABP4 messenger RNA (mRNA; >100 fold) in rats subjected to a T9-T10 contusion injury compared with control. Western blot experiments reveal significant upregulation of FABP4 protein at the injury epicenter, and immunofluorescence analysis identifies that this upregulation occurs in CD11b+ MϕMG. Further, upregulation of FABP4 gene expression correlates with peroxisome proliferator-activated receptor γ (PPARγ) downregulation, inactivation of Iκßα, and the activation of the NF-κB pathway. Analysis of locomotor recovery using the Basso-Beattie-Bresnahan's locomotor scale and the CatWalk gait analysis system shows that injured rats treated with FABP4 inhibitor BMS309403 have significant improvements in locomotion compared with vehicle controls. Additionally, inhibitor-treated rats exhibit enhanced autonomic bladder reflex recovery. Immunofluorescence experiments also show the administration of the FABP4 inhibitor increases the number of CD163+ and liver arginase+ M2 MϕMG within the epicenter and penumbra of the injured spinal cord 28 days post-injury. These findings show that FABP4 may significantly exacerbate locomotor and sensory impairments during SCI by modulating macrophage/microglial activity.


Subject(s)
Biphenyl Compounds , Fatty Acid-Binding Proteins , Locomotion , Pyrazoles , Spinal Cord Injuries , Animals , Biphenyl Compounds/therapeutic use , Fatty Acid-Binding Proteins/antagonists & inhibitors , Fatty Acid-Binding Proteins/metabolism , Macrophages , Microglia , Pyrazoles/therapeutic use , Rats , Recovery of Function , Spinal Cord/metabolism
2.
Brain Behav ; 8(11): e01123, 2018 11.
Article in English | MEDLINE | ID: mdl-30264903

ABSTRACT

BACKGROUND AND AIM: Docosahexaenoic acid (DHA) exhibits neuroprotective properties and has been shown to preserve nerve cells following trauma and ischemic injury. Recently, we showed that DHA pretreatment improved locomotion and reduced neuropathic pain after acute spinal cord injury in adult rats. These improvements were associated with an increase in the levels of AKT in spinal cord injury neurons. In this study, we investigate the implication of PI3K/AKT and mTOR pathway in DHA-mediated protection of primary cultured Schwann cells (pSC) undergoing palmitic acid-induced lipotoxicity (PA-LTx). METHODS: Primary cultured Schwann cells were treated with PA (PA:BSA, 2:1) in the presence or absence of DHA (1-200 µM) for 24-48 hr. Cell viability was determined by crystal violet staining and nuclear morphology was examined using Hoechst staining. RESULTS: We found that pSC cultures exposed to palmitic acid (PA) overload showed chromatin condensation, a decrease in cell viability and an inhibition of AKT phosphorylation in a time-dependent manner. Next, pSC exposed to PA overload were treated with DHA. The data show that co-treatment with DHA inhibited the loss of cell viability and apoptosis caused by PA. Moreover, treatment with DHA inhibited chromatin condensation, significantly stimulated p-AKT phosphorylation under PA-LTx condition, and DHA alone increased AKT phosphorylation. Additionally, when these pSC cultures were treated with PI3K inhibitors LY294002 and, BKM120 and mTOR inhibitors Torin 1 (mTORC1/mTORC2), but not rapamycin (mTORC1), the protective effects of DHA were not observed. CONCLUSION: These findings suggest PI3K/AKT and mTORC2 kinase pathways are involved in the protective function (s) of DHA in PA-induced Schwann cell death.


Subject(s)
Cell Death/drug effects , Docosahexaenoic Acids/pharmacology , Mechanistic Target of Rapamycin Complex 2/metabolism , Neuroprotective Agents/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Schwann Cells/drug effects , Animals , Animals, Newborn , Apoptosis/drug effects , Cell Survival/drug effects , Locomotion , Mechanistic Target of Rapamycin Complex 1/metabolism , Neurons/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Spinal Cord Injuries
3.
Brain Sci ; 8(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29495419

ABSTRACT

Traumatic spinal cord injury (SCI) results in debilitating autonomic dysfunctions, paralysis and significant sensorimotor impairments. A key component of SCI is the generation of free radicals that contributes to the high levels of oxidative stress observed. This study investigates whether dietary supplementation with the antioxidant vitamin E (alpha-tocopherol) improves functional recovery after SCI. Female adult Sprague-Dawley rats were fed either with a normal diet or a dietary regiment supplemented with vitamin E (51 IU/g) for eight weeks. The rats were subsequently exposed either to a contusive SCI or sham operation, and evaluated using standard functional behavior analysis. We report that the rats that consumed the vitamin E-enriched diet showed an accelerated bladder recovery and significant improvements in locomotor function relative to controls, as determined by residual volumes and Basso, Beatie, and Bresnaham BBB scores, respectively. Interestingly, the prophylactic dietary intervention did not preserve neurons in the ventral horn of injured rats, but it significantly increased the numbers of oligodendrocytes. Vitamin E supplementation attenuated the depression of the H-reflex (a typical functional consequence of SCI) while increasing the levels of supraspinal serotonin immunoreactivity. Our findings support the potential complementary use of vitamin E to ameliorate sensory and autonomic dysfunctions associated with spinal cord injury, and identified promising new cellular and functional targets of its neuroprotective effects.

4.
J Neurotrauma ; 33(15): 1436-49, 2016 08 01.
Article in English | MEDLINE | ID: mdl-26715431

ABSTRACT

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA-mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN(+) neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP(+), APC(+), and NG2(+)) and precursor cells (DCX(+), nestin(+)). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 µg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the injured spinal cord.


Subject(s)
Docosahexaenoic Acids/metabolism , Eye Proteins/metabolism , Fatty Acid-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Recovery of Function/physiology , Spinal Cord Injuries/metabolism , Animals , Doublecortin Protein , Female , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...