Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2242): 20210225, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36587816

ABSTRACT

The dithering H-mode phase, characterized by oscillations, is generally observed at input power values close to the L-H transition power threshold and low plasma collisionalities (low electron density and/or high plasma temperature). Measurements to characterize the dithering phase are presented for the low aspect ratio, high magnetic field tokamak, ST40. The dithering phase oscillation frequency is observed between 400 and 800 Hz and demonstrates an inverse relationship with core plasma density. Dithering phase H-modes are documented across a nonlinear, low-density power threshold operational space, with signature low- and high-density branches. The minimum power threshold for dithering H-mode access is measured at a core, line average electron density of 4.7(±0.5) × 1019 m-3, close to a predicted value of 4.1(±0.4) × 1019 m-3 from multi-machine studies. ASTRA calculated values of power coupled to the ion species, at the dithering H-mode transition, exhibit a similar nonlinear dependence on density. This analysis points to the important contribution of the ion thermal channel to the L-H phase transition. The low-frequency plasma density and D-alpha dithers appear to be accompanied by sudden bursts of magnetohydrodynamic (MHD) activity. A simple model is tested to demonstrate a possible scenario of self-regulation among turbulence, zonal flows, pressure (density) gradient and MHD activities. This article is part of a discussion meeting issue 'H-mode transition and pedestal studies in fusion plasmas'.

2.
Rev Sci Instrum ; 89(11): 113501, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501351

ABSTRACT

The experimental method developed at ASDEX Upgrade for the determination of the intrinsic tungsten (W) density profile coupling data from the soft X-ray (SXR) diagnostic and vacuum-ultra-violet (VUV) spectroscopy has been upgraded for application to JET plasmas. The strong poloidal asymmetries in the SXR emission are modeled assuming a ln ( ϵ ( ρ , R ) / ϵ ( ρ , R 0 ) ) = λ ( ρ ) ( R 2 - R 0 2 ) distribution, where ρ is the flux coordinate, R is the major radius, and λ is the fit parameter. The W density is calculated from the resulting 2D SXR emissivity maps accounting for contributions from a low-Z impurity (typically beryllium) and main ion with the assumption that their contributions are poloidally symmetric. Comparing the result with the independent W concentration measurement of VUV spectroscopy, a recalibration factor for the SXR emissivity is calculated making the method robust against the decrease in the sensitivity of the SXR diodes which has been observed across multiple campaigns. The final 2D W density map is checked for consistency versus the time-evolution of the W concentration measurement from VUV spectroscopy, toroidal rotation measurements from charge exchange recombination spectroscopy, and tomographic reconstructions of bolometry data. The method has been found to be robust for W concentrations above a few 10-5 and in cases where the contributions from other medium-Z impurities such as Ni are negligible.

SELECTION OF CITATIONS
SEARCH DETAIL
...