Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38712170

ABSTRACT

ATP-grasp superfamily enzymes contain a hand-like ATP-binding fold and catalyze a variety of reactions using a similar catalytic mechanism. More than 30 protein families are categorized in this superfamily, and they are involved in a plethora of cellular processes and human diseases. Here we identify C12orf29 as an atypical ATP-grasp enzyme that ligates RNA. Human C12orf29 and its homologs auto-adenylate on an active site Lys residue as part of a reaction intermediate that specifically ligates RNA halves containing a 5'-phosphate and a 3'-hydroxyl. C12orf29 binds tRNA in cells and can ligate tRNA within the anticodon loop in vitro. Genetic depletion of c12orf29 in female mice alters global tRNA levels in brain. Furthermore, crystal structures of a C12orf29 homolog from Yasminevirus bound to nucleotides reveal a minimal and atypical RNA ligase fold with a unique active site architecture that participates in catalysis. Collectively, our results identify C12orf29 as an RNA ligase and suggest its involvement in tRNA biology.

2.
Sci Adv ; 10(7): eadd5108, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354245

ABSTRACT

The plant pathogen Pseudomonas syringae encodes a type III secretion system avirulence effector protein, AvrB, that induces a form of programmed cell death called the hypersensitive response in plants as a defense mechanism against systemic infection. Despite the well-documented catalytic activities observed in other Fido (Fic, Doc, and AvrB) proteins, the enzymatic activity and target substrates of AvrB have remained elusive. Here, we show that AvrB is an unprecedented glycosyltransferase that transfers rhamnose from UDP-rhamnose to a threonine residue of the Arabidopsis guardee protein RIN4. We report structures of various enzymatic states of the AvrB-catalyzed rhamnosylation reaction of RIN4, which reveal the structural and mechanistic basis for rhamnosylation by a Fido protein. Collectively, our results uncover an unexpected reaction performed by a prototypical member of the Fido superfamily while providing important insights into the plant hypersensitive response pathway and foreshadowing more diverse chemistry used by Fido proteins and their substrates.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Glycosyltransferases/metabolism , Bacterial Proteins/metabolism , Arabidopsis/metabolism , Pseudomonas syringae/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
3.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328056

ABSTRACT

During homeostasis, the endoplasmic reticulum (ER) maintains productive transmembrane and secretory protein folding that is vital for proper cellular function. The ER-resident HSP70 chaperone, BiP, plays a pivotal role in sensing ER stress to activate the unfolded protein response (UPR). BiP function is regulated by the bifunctional enzyme FicD that mediates AMPylation and deAMPylation of BiP in response to changes in ER stress. AMPylated BiP acts as a molecular rheostat to regulate UPR signaling, yet little is known about the molecular consequences of FicD loss. In this study, we investigate the role of FicD in mouse embryonic fibroblast (MEF) response to pharmacologically and metabolically induced ER stress. We find differential BiP AMPylation signatures when comparing robust chemical ER stress inducers to physiological glucose starvation stress and recovery. Wildtype MEFs respond to pharmacological ER stress by downregulating BiP AMPylation. Conversely, BiP AMPylation in wildtype MEFs increases upon metabolic stress induced by glucose starvation. Deletion of FicD results in widespread gene expression changes under baseline growth conditions. In addition, FicD null MEFs exhibit dampened UPR signaling, altered cell stress recovery response, and unconstrained protein secretion. Taken together, our findings indicate that FicD is important for tampering UPR signaling, stress recovery, and the maintenance of secretory protein homeostasis. Significance Statement: The chaperone BiP plays a key quality control role in the endoplasmic reticulum, the cellular location for the production, folding, and transport of secreted proteins. The enzyme FicD regulates BiP's activity through AMPylation and deAMPylation. Our study unveils the importance of FicD in regulating BiP and the unfolded protein response (UPR) during stress. We identify distinct BiP AMPylation signatures for different stressors, highlighting FicD's nuanced control. Deletion of FicD causes widespread gene expression changes, disrupts UPR signaling, alters stress recovery, and perturbs protein secretion in cells. These observations underscore the pivotal contribution of FicD for preserving secretory protein homeostasis. Our findings deepen the understanding of FicD's role in maintaining cellular resilience and open avenues for therapeutic strategies targeting UPR-associated diseases.

4.
Mol Biol Cell ; 34(11): ar109, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37585288

ABSTRACT

Previous study has demonstrated that the WNK kinases 1 and 3 are direct osmosensors consistent with their established role in cell-volume control. WNK kinases may also be regulated by hydrostatic pressure. Hydrostatic pressure applied to cells in culture with N2 gas or to Drosophila Malpighian tubules by centrifugation induces phosphorylation of downstream effectors of endogenous WNKs. In vitro, the autophosphorylation and activity of the unphosphorylated kinase domain of WNK3 (uWNK3) is enhanced to a lesser extent than in cells by 190 kPa applied with N2 gas. Hydrostatic pressure measurably alters the structure of uWNK3. Data from size exclusion chromatography in line with multi-angle light scattering (SEC-MALS), SEC alone at different back pressures, analytical ultracentrifugation (AUC), NMR, and chemical crosslinking indicate a change in oligomeric structure in the presence of hydrostatic pressure from a WNK3 dimer to a monomer. The effects on the structure are related to those seen with osmolytes. Potential mechanisms of hydrostatic pressure activation of uWNK3 and the relationships of pressure activation to WNK osmosensing are discussed.


Subject(s)
Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Hydrostatic Pressure , Phosphorylation
5.
Proc Natl Acad Sci U S A ; 119(32): e2208317119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914137

ABSTRACT

The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage. Previously, we discovered that the enzyme filamentation induced by cyclic-AMP (Fic) can modulate the UPR response via posttranslational modification of binding immunoglobulin protein (BiP) by AMPylation during homeostasis and deAMPylation during stress. Loss of fic in Drosophila leads to vision defects and altered UPR activation in the fly eye. To investigate the importance of Fic-mediated AMPylation in a mammalian system, we generated a conditional null allele of Fic in mice and characterized the effect of Fic loss on the exocrine pancreas. Compared to controls, Fic-/- mice exhibit elevated serum markers for pancreatic dysfunction and display enhanced UPR signaling in the exocrine pancreas in response to physiological and pharmacological stress. In addition, both fic-/- flies and Fic-/- mice show reduced capacity to recover from damage by stress that triggers the UPR. These findings show that Fic-mediated AMPylation acts as a molecular rheostat that is required to temper the UPR response in the mammalian pancreas during physiological stress. Based on these findings, we propose that repeated physiological stress in differentiated tissues requires this rheostat for tissue resilience and continued function over the lifetime of an animal.


Subject(s)
Cyclic AMP , Drosophila Proteins , Drosophila melanogaster , Endoplasmic Reticulum Stress , Nucleotidyltransferases , Stress, Physiological , Unfolded Protein Response , Animals , Mice , Alleles , Cyclic AMP/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/drug effects , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Pancreas/drug effects , Pancreas/enzymology , Pancreas/metabolism , Pancreas/physiopathology , Stress, Physiological/drug effects , Unfolded Protein Response/drug effects
6.
PLoS Genet ; 17(10): e1009832, 2021 10.
Article in English | MEDLINE | ID: mdl-34673774

ABSTRACT

The mammalian target of rapamycin complex 1 (mTORC1) senses multiple stimuli to regulate anabolic and catabolic processes. mTORC1 is typically hyperactivated in multiple human diseases such as cancer and type 2 diabetes. Extensive research has focused on signaling pathways that can activate mTORC1 such as growth factors and amino acids. However, less is known about signaling cues that can directly inhibit mTORC1 activity. Here, we identify A-kinase anchoring protein 13 (AKAP13) as an mTORC1 binding protein, and a crucial regulator of mTORC1 inhibition by G-protein coupled receptor (GPCR) signaling. GPCRs paired to Gαs proteins increase cyclic adenosine 3'5' monophosphate (cAMP) to activate protein kinase A (PKA). Mechanistically, AKAP13 acts as a scaffold for PKA and mTORC1, where PKA inhibits mTORC1 through the phosphorylation of Raptor on Ser 791. Importantly, AKAP13 mediates mTORC1-induced cell proliferation, cell size, and colony formation. AKAP13 expression correlates with mTORC1 activation and overall lung adenocarcinoma patient survival, as well as lung cancer tumor growth in vivo. Our study identifies AKAP13 as an important player in mTORC1 inhibition by GPCRs, and targeting this pathway may be beneficial for human diseases with hyperactivated mTORC1.


Subject(s)
A Kinase Anchor Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Minor Histocompatibility Antigens/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , A549 Cells , Animals , Cell Line , Cell Line, Tumor , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , HCT116 Cells , HEK293 Cells , Humans , Mice , PC-3 Cells , Phosphorylation/physiology
7.
J Biol Chem ; 296: 100301, 2021.
Article in English | MEDLINE | ID: mdl-33476647

ABSTRACT

ADP-ribosyltransferases (ARTs) are a widespread superfamily of enzymes frequently employed in pathogenic strategies of bacteria. Legionella pneumophila, the causative agent of a severe form of pneumonia known as Legionnaire's disease, has acquired over 330 translocated effectors that showcase remarkable biochemical and structural diversity. However, the ART effectors that influence L. pneumophila have not been well defined. Here, we took a bioinformatic approach to search the Legionella effector repertoire for additional divergent members of the ART superfamily and identified an ART domain in Legionella pneumophila gene0181, which we hereafter refer to as Legionella ADP-Ribosyltransferase 1 (Lart1) (Legionella ART 1). We show that L. pneumophila Lart1 targets a specific class of 120-kDa NAD+-dependent glutamate dehydrogenase (GDH) enzymes found in fungi and protists, including many natural hosts of Legionella. Lart1 targets a conserved arginine residue in the NAD+-binding pocket of GDH, thereby blocking oxidative deamination of glutamate. Therefore, Lart1 could be the first example of a Legionella effector which directly targets a host metabolic enzyme during infection.


Subject(s)
ADP Ribose Transferases/chemistry , Bacterial Proteins/chemistry , Glutamate Dehydrogenase/chemistry , Legionella pneumophila/genetics , ADP Ribose Transferases/genetics , ADP Ribose Transferases/metabolism , ADP-Ribosylation , Amino Acid Sequence , Amoeba/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Deamination , Escherichia coli/genetics , Escherichia coli/metabolism , Fungi , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Host-Pathogen Interactions , Kinetics , Legionella pneumophila/enzymology , Legionella pneumophila/pathogenicity , Models, Molecular , Oxidation-Reduction , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity
8.
Nat Struct Mol Biol ; 27(6): 589-597, 2020 06.
Article in English | MEDLINE | ID: mdl-32424347

ABSTRACT

The Vibrio parahaemolyticus T3SS effector VopQ targets host-cell V-ATPase, resulting in blockage of autophagic flux and neutralization of acidic compartments. Here, we report the cryo-EM structure of VopQ bound to the Vo subcomplex of the V-ATPase. VopQ inserts into membranes and forms an unconventional pore while binding directly to subunit c of the V-ATPase membrane-embedded subcomplex Vo. We show that VopQ arrests yeast growth in vivo by targeting the immature Vo subcomplex in the endoplasmic reticulum (ER), thus providing insight into the observation that VopQ kills cells in the absence of a functional V-ATPase. VopQ is a bacterial effector that has been discovered to inhibit a host-membrane megadalton complex by coincidentally binding its target, inserting into a membrane and disrupting membrane potential. Collectively, our results reveal a mechanism by which bacterial effectors modulate host cell biology and provide an invaluable tool for future studies on V-ATPase-mediated membrane fusion and autophagy.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Vibrio parahaemolyticus/metabolism , Bacterial Proteins/genetics , Cell Membrane , Cryoelectron Microscopy , Host-Pathogen Interactions , Models, Molecular , Protein Conformation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Vacuolar Proton-Translocating ATPases/genetics
9.
Sci Rep ; 10(1): 7713, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32382024

ABSTRACT

Extracellular vesicles secreted from tumor cells are functional vehicles capable of contributing to intercellular communication and metastasis. A growing number of studies have focused on elucidating the role that tumor-derived extracellular vesicles play in spreading pancreatic cancer to other organs, due to the highly metastatic nature of the disease. We recently showed that small extracellular vesicles secreted from pancreatic cancer cells could initiate malignant transformation of healthy cells. Here, we analyzed the protein cargo contained within these vesicles using mass spectrometry-based proteomics to better understand their makeup and biological characteristics. Three different human pancreatic cancer cell lines were compared to normal pancreatic epithelial cells revealing distinct differences in protein cargo between cancer and normal vesicles. Vesicles from cancer cells contain an enrichment of proteins that function in the endosomal compartment of cells responsible for vesicle formation and secretion in addition to proteins that have been shown to contribute to oncogenic cell transformation. Conversely, vesicles from normal pancreatic cells were shown to be enriched for immune response proteins. Collectively, results contribute to what we know about the cargo contained within or excluded from cancer cell-derived extracellular vesicles, supporting their role in biological processes including metastasis and cancer progression.


Subject(s)
Cell Transformation, Neoplastic/genetics , Pancreatic Neoplasms/genetics , Proteomics , Tumor Microenvironment/genetics , Cell Communication/genetics , Cell Line, Tumor , Exosomes/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Pancreatic Neoplasms/pathology
10.
Cell ; 179(1): 205-218.e21, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31522888

ABSTRACT

The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.


Subject(s)
Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Mimicry/immunology , Plant Immunity/physiology , Adenosine Triphosphatases/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/microbiology , Bacterial Proteins/chemistry , HEK293 Cells , HSP90 Heat-Shock Proteins/chemistry , HeLa Cells , Host Microbial Interactions/immunology , Humans , Phosphorylation , Plasmids/genetics , Protein Binding , Protein Folding , Protein Kinases/metabolism , Pseudomonas syringae/metabolism , Saccharomyces cerevisiae/metabolism
11.
Science ; 364(6442): 787-792, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31123136

ABSTRACT

Enzymes with a protein kinase fold transfer phosphate from adenosine 5'-triphosphate (ATP) to substrates in a process known as phosphorylation. Here, we show that the Legionella meta-effector SidJ adopts a protein kinase fold, yet unexpectedly catalyzes protein polyglutamylation. SidJ is activated by host-cell calmodulin to polyglutamylate the SidE family of ubiquitin (Ub) ligases. Crystal structures of the SidJ-calmodulin complex reveal a protein kinase fold that catalyzes ATP-dependent isopeptide bond formation between the amino group of free glutamate and the γ-carboxyl group of an active-site glutamate in SidE. We show that SidJ polyglutamylation of SidE, and the consequent inactivation of Ub ligase activity, is required for successful Legionella replication in a viable eukaryotic host cell.


Subject(s)
Bacterial Proteins/metabolism , Legionella pneumophila/enzymology , Polyglutamic Acid/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virulence Factors/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Calmodulin/chemistry , Calmodulin/metabolism , Catalytic Domain , Crystallography, X-Ray , HEK293 Cells , Humans , Legionella pneumophila/genetics , Legionella pneumophila/pathogenicity , Phosphorylation , Polyglutamic Acid/chemistry , Polyglutamic Acid/genetics , Protein Domains/genetics , Protein Kinases/chemistry , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Virulence Factors/chemistry , Virulence Factors/genetics
12.
Cell ; 175(3): 809-821.e19, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30270044

ABSTRACT

Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.


Subject(s)
Adenosine Monophosphate/metabolism , Catalytic Domain , Protein Processing, Post-Translational , Selenoproteins/metabolism , Conserved Sequence , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidative Stress , Selenoproteins/chemistry
14.
J Biol Chem ; 292(51): 21193-21204, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29089387

ABSTRACT

Protein chaperones play a critical role in proteostasis. The activity of the major endoplasmic reticulum chaperone BiP (GRP78) is regulated by Fic-mediated AMPylation during resting states. By contrast, during times of stress, BiP is deAMPylated. Here, we show that excessive AMPylation by a constitutively active FicE247G mutant is lethal in Drosophila This lethality is cell-autonomous, as directed expression of the mutant FicE247G to the fly eye does not kill the fly but rather results in a rough and reduced eye. Lethality and eye phenotypes are rescued by the deAMPylation activity of wild-type Fic. Consistent with Fic acting as a deAMPylation enzyme, its activity was both time- and concentration-dependent. Furthermore, Fic deAMPylation activity was sufficient to suppress the AMPylation activity mediated by the constitutively active FicE247G mutant in Drosophila S2 lysates. Further, we show that the dual enzymatic activity of Fic is, in part, regulated by Fic dimerization, as loss of this dimerization increases AMPylation and reduces deAMPylation of BiP.


Subject(s)
Adenosine Monophosphate/metabolism , Drosophila Proteins/metabolism , Heat-Shock Proteins/metabolism , Nucleotidyltransferases/metabolism , Protein Processing, Post-Translational , Amino Acid Substitution , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Cell Line , Dimerization , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Eye Abnormalities/veterinary , Female , Homozygote , Kinetics , Male , Mutation , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , Organ Specificity , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Survival Analysis , Synthetic Lethal Mutations
15.
Acc Chem Res ; 49(7): 1421-8, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27334393

ABSTRACT

Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the guanidinium ion. Studies on the neuropeptide substance P illustrate the ability of cryo-IM-MS to elucidate information about heterogeneous ion populations. Results show that a kinetically trapped conformer is stabilized by a combination of hydration and specific intramolecular interactions, but upon dehydration, this conformer rearranges to form a thermodynamically favored gas-phase ion conformation. Finally, recent studies on hydration of the protein ubiquitin reveal water-mediated dimerization, thereby illustrating the extension of this approach to studies of large biomolecules. Collectively, these studies illustrate a new dimension to studies of biomolecules, resulting from the ability to monitor snapshots of the structural evolution of ions during the transition from solution to gas phase and provide unparalleled insights into the intricate interplay between competing effects that dictate conformational preferences.

16.
J Am Soc Mass Spectrom ; 27(6): 1037-47, 2016 06.
Article in English | MEDLINE | ID: mdl-27059978

ABSTRACT

When the all-cis polyproline-I helix (PPI, favored in 1-propanol) of polyproline-13 is introduced into water, it folds into the all-trans polyproline-II (PPII) helix through at least six intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we show that the solvent-free intermediates refold into the all-cis PPI helix with high (>90%) efficiency. Moreover, in the absence of solvent, each intermediate appears to utilize the same small set of pathways observed for the solution-phase PPII → PPI transition upon immersion of PPIIaq in 1-propanol. That folding in solution (under conditions where water is displaced by propanol) and folding in vacuo (where energy required for folding is provided by collisional activation) occur along the same pathway is remarkable. Implicit in this statement is that 1-propanol mimics a "dry" environment, similar to the gas phase. We note that intermediates with structures that are similar to PPIIaq can form PPII under the most gentle activation conditions-indicating that some transitions observed in water (i.e., "wet" folding, are accessible (albeit inefficient) in vacuo. Lastly, these "dry" folding experiments show that PPI (all cis) is favored under "dry" conditions, which underscores the role of water as the major factor promoting preference for trans proline. Graphical Abstract ᅟ.


Subject(s)
Peptides/chemistry , Protein Folding , Proline , Protein Structure, Secondary , Solvents , Thermodynamics
17.
J Phys Chem Lett ; 6(24): 4947-51, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26625010

ABSTRACT

The dynamics, structures, and functions of most biological molecules are strongly influenced by the nature of the peptide's or protein's interaction with water. Here, cryogenic ion mobility-mass spectrometry studies of ubiquitin have directly captured a water-mediated protein-protein binding event involving hydrated, noncovalently bound dimer ions in solution, and this interaction has potential relevance to one of the most important protein-protein interactions in nature. As solvent is removed, dimer ions, viz. [2 M + 14H](14+), can be stabilized by only a few attached water molecules prior to dissociation into individual monomeric ions. The hydrophobic patch of ubiquitin formed by the side chains of Leu-8, Ile-44, and Val-70 meet all the necessary conditions for a protein-protein binding "hot spot," including the requirement for occlusion of water to nearby hydrophilic sites, and it is suggested that this interaction is responsible for formation of the hydrated noncovalent ubiquitin dimer.


Subject(s)
Mass Spectrometry/methods , Ubiquitin/chemistry , Water/chemistry , Dimerization
18.
J Am Chem Soc ; 137(28): 8916-9, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26154946

ABSTRACT

Hydration of the ammonium ion plays a key role in determining the biomolecular structure as well as local structure of water in aqueous environments. Experimental data obtained by cryogenic ion mobility-mass spectrometry (cryo-IM-MS) show that dehydration of alkyl diammonium cations induces a distinct unfolding transition at a critical number of water molecules, n = 21 to 23, n = 24 to 26, and n = 27 to 29, for 1,7-diaminoheptane, 1,8-diaminooctane, and 1,10-diaminodecane, respectively. Results are also presented that reveal compelling evidence for unique structural transitions of hydrated ammonium ions associated with the development of the hydrogen-bond network around individual charged groups. The ability to track the evolution of structure upon stepwise dehydration provides direct insight into the intricate interplay between solvent-molecule interactions that are responsible for defining conformations. Such insights are potentially valuable in understanding how ammonium ion solvation influences conformation(s) of larger biomolecules.


Subject(s)
Diamines/chemistry , Water/chemistry , Cations/chemistry , Freezing , Spectrometry, Mass, Electrospray Ionization
19.
J Phys Chem B ; 119(13): 4693-8, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25760225

ABSTRACT

Substance P (RPKPQQFFGLM-NH2) [M + 3H](3+) ions have been shown to occupy two distinct conformer states, a compact population of conformers that is formed by evaporation of hydrated ions, and an elongated population of conformers that is formed by collisional heating of the compact conformer. Molecular dynamics (MD) simulations and amino acid mutations revealed that the compact conformer is stabilized by intramolecular interactions between the localized charge-carrying sites, specifically the N-terminus, R(1), and K(3), with the side chains of glutamine and phenylalanine residues present in the peptide. Here, we employ amino acid mutations and cryogenic ion mobility-mass spectrometry (cryo-IM-MS) in an effort to understand how eliminating specific intramolecular interactions alters ion hydration, as well as the dehydration dynamics of substance P during the final stages of the electrospray process. The results clearly illustrate a direct link between the stabilizing effects of intramolecular self-solvation and the formation of substance P [M + 3H](3+) ions. Most notably, removal of these stabilizing interactions leads to a reduction in the abundances of [M + 3H](3+) ions induced by charge reduction reactions, i.e., loss of H(+)(H2O)n ions to form [M + 2H](2+) ions during the final stages of the electrospray process.


Subject(s)
Gases/chemistry , Phase Transition , Spectrometry, Mass, Electrospray Ionization , Substance P/chemistry , Ions/chemistry , Mutation , Solutions , Substance P/genetics , Temperature , Water/chemistry
20.
J Phys Chem B ; 118(49): 14336-44, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25402008

ABSTRACT

Substance P (RPKPQQFFGLM-NH2) [M + 3H](3+) ions have been shown to exist as two conformers: one that is kinetically trapped and one that is thermodynamically more stable and therefore energetically preferred. Molecular dynamics (MD) simulations suggested that the kinetically trapped population is stabilized by interactions between the charge sites and the polar side chains of glutamine (Q) located at positions 5 and 6 and phenylalanine (F) located at positions 7 and 8. Here, the individual contributions of these specific intramolecular interactions are systematically probed through site-directed alanine mutations of the native amino acid sequence. Ion mobility spectrometry data for the mutant peptide ions confirm that interactions between the charge sites and glutamine/phenylalanine (Q/F) side chains afford stabilization of the kinetically trapped ion population. In addition, experimental data for proline-to-alanine mutations at positions 2 and 4 clearly show that interactions involving the charge sites and the Q/F side chains are altered by the cis/trans orientations of the proline residues and that mutation of glycine to proline at position 9 supports results from MD simulations suggesting that the C-terminus also provides stabilization of the kinetically trapped conformation.


Subject(s)
Gases/chemistry , Substance P/analysis , Amino Acid Sequence , Kinetics , Molecular Conformation , Molecular Dynamics Simulation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...