Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 102(1-1): 012604, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32794894

ABSTRACT

We present a molecular dynamics study of the flow of rigid spherical nanoparticles in a simple fluid. We evaluate the viscosity of the dispersion as a function of shear rate and nanoparticle volume fraction. We observe shear-thinning behavior at low volume fractions; as the shear rate increases, the shear forces overcome the Brownian forces, resulting in more frequent and more violent collisions between the nanoparticles. This in turn results in more dissipation. We show that in order to be in the shear-thinning regime the nanoparticles have to order themselves into layers longitudinal to the flow to minimize the collisions. As the nanoparticle volume fraction increases there is less room to form the ordered layers; consequently as the shear rate increases the nanoparticles collide more, which results in turn in shear thickening. Most interestingly, we show that at intermediate volume fractions the system exhibits metastability, with successions of ordered and disordered states along the same trajectory. Our results suggest that for nanoparticles in a simple fluid the hydroclustering phenomenon is not present; instead the order-disorder transition is the leading mechanism for the transition from shear thinning to shear thickening.

2.
Phys Rev E ; 100(2-1): 023113, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574604

ABSTRACT

We present a molecular dynamics study of the motion of cylindrical polymer droplets on striped surfaces. We first consider the equilibrium properties of droplets on different surfaces, we show that for small stripes the Cassie-Baxter equation gives a good approximation of the equilibrium contact angle. As the stripe width becomes nonnegligible compared to the dimension of the droplet, it has to deform significantly to minimize its free energy; this results in a smaller value of the contact angle than the continuum model predicts. We then evaluate the slip length and thus the damping coefficient as a function of the stripe width. For very small stripes, the heterogeneous surface behaves as an effective surface, with the same damping as a homogeneous surface with the same contact angle. However, as the stripe width increases, damping at the surface increases until reaching a plateau. Afterwards, we study the dynamics of droplets under a bulk force. We show that if the stripes are large enough the droplets are pinned until a critical force. The critical force increases linearly with stripe width. For large enough forces, the average velocity increases linearly with the force, we show that it can then be predicted by a model depending only on droplet size, contact angle, viscosity, and slip length. We show that the velocity of the droplet varies sinusoidally as a function of its position on the substrate. However, for bulk forces just above the depinning force we observe a characteristic stick-slip motion, with successive pinnings and depinnings.

3.
J Phys Condens Matter ; 23(18): 184105, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21508476

ABSTRACT

The equilibrium and flow of polymer films and drops past a surface are characterized by the interface and surface tensions, viscosity, slip length and hydrodynamic boundary position. These parameters of the continuum description are extracted from molecular simulations of coarse-grained models. Hard, corrugated substrates are modelled by a Lennard-Jones solid while polymer brushes are studied as prototypes of soft, deformable surfaces. Four observations are discussed. (i) If the surface becomes strongly attractive or is coated with a brush, the Navier boundary condition fails to describe the effect of the surface independently of the strength and type of the flow. This failure stems from the formation of a boundary layer with an effective, higher viscosity. (ii) In the case of brush-coated surfaces, flow induces a cyclic, tumbling motion of the tethered chain molecules. Their collective motion gives rise to an inversion of the flow in the vicinity of the grafting surfaces and leads to strong, non-Gaussian fluctuations of the molecular orientations. The flow past a polymer brush cannot be described by Brinkman's equation. (iii) The hydrodynamic boundary condition is an important parameter for predicting the motion of polymer droplets on a surface under the influence of an external force. Their steady-state velocity is dictated by a balance between the power that is provided by the external force and the dissipation. If there is slippage at the liquid-solid interface, the friction at the solid-liquid interface and the viscous dissipation of the flow inside the drop will be the dominant dissipation mechanisms; dissipation at the three-phase contact line appears to be less important on a hard surface. (iv) On a soft, deformable substrate like a polymer brush, we observe a lifting-up of the three-phase contact line. Controlling the grafting density and the incompatibility between the brush and the polymer liquid we can independently tune the softness of the surface and the contact angle and thereby identify the parameters for maximizing the deformation at the three-phase contact.


Subject(s)
Polymers/chemistry , Algorithms , Computer Simulation , Hydrodynamics , Models, Statistical , Molecular Conformation , Movement , Normal Distribution , Shear Strength , Stress, Mechanical , Surface Properties , Viscosity
4.
J Chem Phys ; 133(8): 085101, 2010 Aug 28.
Article in English | MEDLINE | ID: mdl-20815594

ABSTRACT

We study the dynamics of hydration water/protein association in folded proteins using lysozyme and myoglobin as examples. Extensive molecular dynamics simulations are performed to identify underlying mechanisms of the dynamical transition that corresponds to the onset of amplified atomic fluctuations in proteins. The results indicate that the number of water molecules within a cutoff distance of each residue scales linearly with protein depth index and is not affected by the local dynamics of the backbone. Keeping track of the water molecules within the cutoff sphere, we observe an effective residence time, scaling inversely with depth index at physiological temperatures while the diffusive escape is highly reduced below the transition. A depth independent orientational memory loss is obtained for the average dipole vector of the water molecules within the sphere when the protein is functional. While below the transition temperature, the solvent is in a glassy state, acting as a solid crust around the protein, inhibiting any large scale conformational fluctuations. At the transition, most of the hydration shell unfreezes and water molecules collectively make the protein more flexible.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Water/chemistry , Algorithms , Diffusion , Muramidase/chemistry , Myoglobin/chemistry , Pliability , Solvents/chemistry , Temperature
5.
Phys Rev Lett ; 101(2): 026101, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18764200

ABSTRACT

Using Couette and Poiseuille flows, we extract the temperature dependence of the slip length, delta, from molecular dynamics simulations of a coarse-grained polymer model in contact with an attractive surface. delta is dictated by the ratio of bulk viscosity and surface mobility. At weakly attractive surfaces, lubrication layers form; delta is large and increases upon cooling. Close to the glass transition temperature Tg, very large slip lengths are observed. At a more attractive surface, a sticky surface layer is built up, giving rise to small slip lengths. Upon cooling, delta decreases at high temperatures, passes through a minimum, and grows for T-->Tg. At strongly attractive surfaces, the Navier-slip condition fails to describe Couette and Poiseuille flows simultaneously. The simulations are corroborated by a schematic, two-layer model suggesting that the observations do not depend on details of the computational model.

6.
J Chem Phys ; 128(1): 014709, 2008 Jan 07.
Article in English | MEDLINE | ID: mdl-18190214

ABSTRACT

We study the rolling and sliding motion of droplets on a corrugated substrate by Molecular Dynamics simulations. Droplets are driven by an external body force (gravity) and we investigate the velocity profile and dissipation mechanisms in the steady state. The cylindrical geometry allows us to consider a large range of droplet sizes. The velocity of small droplets with a large contact angle is dominated by the friction at the substrate and the velocity of the center of mass scales like the square root of the droplet size. For large droplets or small contact angles, however, viscous dissipation of the flow inside the volume of the droplet dictates the center of mass velocity that scales linearly with the size. We derive a simple analytical description predicting the dependence of the center of mass velocity on droplet size and the slip length at the substrate. In the limit of vanishing droplet velocity we quantitatively compare our simulation results to the predictions and good agreement without adjustable parameters is found.

7.
J Chem Phys ; 126(18): 184512, 2007 May 14.
Article in English | MEDLINE | ID: mdl-17508816

ABSTRACT

The authors propose a new method, the Helfand-moment method, to compute the shear viscosity by equilibrium molecular dynamics in periodic systems. In this method, the shear viscosity is written as an Einstein-type relation in terms of the variance of the so-called Helfand moment. This quantity is modified in order to satisfy systems with periodic boundary conditions usually considered in molecular dynamics. They calculate the shear viscosity in the Lennard-Jones fluid near the triple point thanks to this new technique. They show that the results of the Helfand-moment method are in excellent agreement with the results of the standard Green-Kubo method.

8.
J Chem Phys ; 126(18): 184513, 2007 May 14.
Article in English | MEDLINE | ID: mdl-17508817

ABSTRACT

The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent.

9.
Phys Rev Lett ; 97(18): 186106, 2006 Nov 03.
Article in English | MEDLINE | ID: mdl-17155560

ABSTRACT

We report a study of the rotational dynamics in double-walled nanotubes using molecular dynamics simulations and a simple analytical model that reproduces the observations very well. We show that the dynamic friction is linear in the angular velocity for a wide range of values. The molecular dynamics simulations show that for large enough systems the relaxation time takes a constant value depending only on the interlayer spacing and temperature. Moreover, the friction force increases linearly with contact area and the relaxation time decreases with the temperature with a power law of exponent -1.53+/-0.04.

10.
Phys Rev Lett ; 91(18): 185503, 2003 Oct 31.
Article in English | MEDLINE | ID: mdl-14611290

ABSTRACT

In this Letter we develop theoretical and numerical methods to calculate the dynamic friction coefficient. The theoretical method is based on an adiabatic approximation which allows us to express the dynamic friction coefficient in terms of the time integral of the autocorrelation function of the force between both sliding objects. The motion of the objects and the autocorrelation function can be numerically calculated by molecular-dynamics simulations. We have successfully applied these methods to the evaluation of the dynamic friction coefficient of the relative motion of two concentric carbon nanotubes. The dynamic friction coefficient is shown to increase with the temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...