Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 593: 21-31, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33730653

ABSTRACT

HYPOTHESIS: The objective is to noninvasively probe the local hydrocarbon dynamics at asphaltene/maltene interfaces to reveal the global characteristics of bitumen at increasing temperatures and under various mechanical constraints. EXPERIMENTS: We propose multidimensional (1D and 2D) nuclear magnetic relaxation (NMR) experiments to characterize the dynamic properties of hydrocarbons for a set of bitumen from 40 to 180 °C. The convergence towards universal theoretical modelling of NMR relaxation experiments gives a comprehensive understanding of hydrocarbon transport in these very weakly permeable samples. Moreover, a multivariate statistical analysis allows for correlating these NMR relaxation data for all bitumen samples to the main empirical parameters by qualifying the bitumen grading, such as the penetrability, softening and fragility points over a large range of temperatures. FINDINGS: These new experimental and theoretical multiscale approaches link hydrocarbon interfacial dynamics to the global characteristics of various bitumen types. This is critical for grading these universally encountered materials.

2.
Biomol NMR Assign ; 8(2): 383-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24065419

ABSTRACT

Eukaryotic proteasome assembly is a highly organized process mediated by several proteasome-specific chaperones, which interact with proteasome assembly intermediates. In yeast, Ump1 and Pba1-4 have been identified as assembly chaperones that are dedicated to the formation of the proteasome 20S catalytic core complex. The crystal structures of Pba chaperones have been reported previously, but no detailed information has been provided for the structure of Ump1. Thus, to better understand the mechanisms underlying Ump1-mediated proteasome assembly, we characterized the conformation of Ump1 in solution using NMR. Backbone chemical shift data indicated that Ump1 is an intrinsically unstructured protein and largely devoid of secondary structural elements.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Nuclear Magnetic Resonance, Biomolecular , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae
3.
J Biol Chem ; 286(43): 37496-502, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21900242

ABSTRACT

Proteasomal degradation is mediated through modification of target proteins by Lys-48-linked polyubiquitin (polyUb) chain, which interacts with several binding partners in this pathway through hydrophobic surfaces on individual Ub units. However, the previously reported crystal structures of Lys-48-linked diUb exhibit a closed conformation with sequestered hydrophobic surfaces. NMR studies on mutated Lys-48-linked diUb indicated a pH-dependent conformational equilibrium between closed and open states with the predominance of the former under neutral conditions (90% at pH 6.8). To address the question of how Ub-binding proteins can efficiently access the sequestered hydrophobic surfaces of Ub chains, we revisited the conformational dynamics of Lys-48-linked diUb in solution using wild-type diUb and cyclic forms of diUb in which the Ub units are connected through two Lys-48-mediated isopeptide bonds. Our newly determined crystal structure of wild-type diUb showed an open conformation, whereas NMR analyses of cyclic Lys-48-linked diUb in solution revealed that its structure resembled the closed conformation observed in previous crystal structures. Comparison of a chemical shift of wild-type diUb with that of monomeric Ub and cyclic diUb, which mimic the open and closed states, respectively, with regard to the exposure of hydrophobic surfaces to the solvent indicates that wild-type Lys-48-linked diUb in solution predominantly exhibits the open conformation (75% at pH 7.0), which becomes more populated upon lowering pH. The intrinsic properties of Lys-48-linked Ub chains to adopt the open conformation may be advantageous for interacting with Ub-binding proteins.


Subject(s)
Protein Multimerization/physiology , Ubiquitin/chemistry , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , Ubiquitin/metabolism
4.
J Mol Biol ; 396(2): 361-74, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-19944705

ABSTRACT

Protein disulfide isomerase (PDI) is a major protein in the endoplasmic reticulum, operating as an essential folding catalyst and molecular chaperone for disulfide-containing proteins by catalyzing the formation, rearrangement, and breakage of their disulfide bridges. This enzyme has a modular structure with four thioredoxin-like domains, a, b, b', and a', along with a C-terminal extension. The homologous a and a' domains contain one cysteine pair in their active site directly involved in thiol-disulfide exchange reactions, while the b' domain putatively provides a primary binding site for unstructured regions of the substrate polypeptides. Here, we report a redox-dependent intramolecular rearrangement of the b' and a' domains of PDI from Humicola insolens, a thermophilic fungus, elucidated by combined use of nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) methods. Our NMR data showed that the substrates bound to a hydrophobic surface spanning these two domains, which became more exposed to the solvent upon oxidation of the active site of the a' domain. The hydrogen-deuterium exchange and relaxation data indicated that the redox state of the a' domain influences the dynamic properties of the b' domain. Moreover, the SAXS profiles revealed that oxidation of the a' active site causes segregation of the two domains. On the basis of these data, we propose a mechanistic model of PDI action; the a' domain transfers its own disulfide bond into the unfolded protein accommodated on the hydrophobic surface of the substrate-binding region, which consequently changes into a "closed" form releasing the oxidized substrate.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/metabolism , Ascomycota/enzymology , Ascomycota/metabolism , Binding Sites , Crystallography, X-Ray , Models, Biological , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Protein Folding , Protein Structure, Tertiary/physiology , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...