Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 487: 42-56, 2022 07.
Article in English | MEDLINE | ID: mdl-35429490

ABSTRACT

In mammalian development, oscillatory activation of Notch signaling is required for segmentation clock function during somitogenesis. Notch activity oscillations are synchronized between neighboring cells in the presomitic mesoderm (PSM) and have a period that matches the rate of somite formation. Normal clock function requires cyclic expression of the Lunatic fringe (LFNG) glycosyltransferase, as well as expression of the inhibitory Notch ligand Delta-like 3 (DLL3). How these factors coordinate Notch activation in the clock is not well understood. Recent evidence suggests that LFNG can act in a signal-sending cell to influence Notch activity in the clock, raising the possibility that in this context, glycosylation of Notch pathway proteins by LFNG may affect ligand activity. Here we dissect the genetic interactions of Lfng and Dll3 specifically in the segmentation clock and observe distinctions in the skeletal and clock phenotypes of mutant embryos showing that paradoxically, loss of Dll3 is associated with strong reductions in Notch activity in the caudal PSM. The patterns of Notch activity in the PSM suggest that the loss of Dll3 is epistatic to the loss of Lfng in the segmentation clock, and we present direct evidence for the modification of several DLL1 and DLL3 EGF-repeats by LFNG. We further demonstrate that DLL3 expression in cells co-expressing DLL1 and NOTCH1 can potentiate a cell's signal-sending activity and that this effect is modulated by LFNG, suggesting a mechanism for coordinated regulation of oscillatory Notch activation in the clock by glycosylation and cis-inhibition.


Subject(s)
Receptors, Notch , Somites , Animals , Gene Expression Regulation, Developmental , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Ligands , Mammals/genetics , Mesoderm/metabolism , Receptors, Notch/metabolism , Somites/metabolism
2.
iScience ; 9: 120-137, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30390433

ABSTRACT

Fast-spiking (FS) neurons can fire action potentials (APs) up to 1,000 Hz and play key roles in vital functions such as sound location, motor coordination, and cognition. Here we report that the concerted actions of Kv3 voltage-gated K+ (Kv) and Na+ (Nav) channels are sufficient and necessary for inducing and maintaining FS. Voltage-clamp analysis revealed a robust correlation between the Kv3/Nav current ratio and FS. Expressing Kv3 channels alone could convert ∼30%-60% slow-spiking (SS) neurons to FS in culture. In contrast, co-expression of either Nav1.2 or Nav1.6 together with Kv3.1 or Kv3.3, but not alone or with Kv1.2, converted SS to FS with 100% efficiency. Furthermore, RNA-sequencing-based genome-wide analysis revealed that the Kv3/Nav ratio and Kv3 expression levels strongly correlated with the maximal AP frequencies. Therefore, FS is established by the properly balanced activities of Kv3 and Nav channels and could be further fine-tuned by channel biophysical features and localization patterns.

3.
J Vis Exp ; (134)2018 04 30.
Article in English | MEDLINE | ID: mdl-29757278

ABSTRACT

Axonal varicosities are enlarged structures along the shafts of axons with a high degree of heterogeneity. They are present not only in brains with neurodegenerative diseases or injuries, but also in the normal brain. Here, we describe a newly-established micromechanical system to rapidly, reliably, and reversibly induce axonal varicosities, allowing us to understand the mechanisms governing varicosity formation and heterogeneous protein composition. This system represents a novel means to evaluate the effects of compression and shear stress on different subcellular compartments of neurons, different from other in vitro systems that mainly focus on the effect of stretching. Importantly, owing to the unique features of our system, we recently made a novel discovery showing that the application of pressurized fluid can rapidly and reversibly induce axonal varicosities through the activation of a transient receptor potential channel. Our biomechanical system can be utilized conveniently in combination with drug perfusion, live cell imaging, calcium imaging, and patch clamp recording. Therefore, this method can be adopted for studying mechanosensitive ion channels, axonal transport regulation, axonal cytoskeleton dynamics, calcium signaling, and morphological changes related to traumatic brain injury.


Subject(s)
Axonal Transport/genetics , Axons/physiology , Brain Injuries, Traumatic/genetics , Calcium/metabolism , Neurons/physiology , Animals , Female , Mice , Pregnancy , Rats
4.
Front Genet ; 8: 132, 2017.
Article in English | MEDLINE | ID: mdl-28983319

ABSTRACT

Sphingolipid metabolism is important to balance the abundance of bioactive lipid molecules involved in cell signaling, neuronal function, and survival. Specifically, the sphingolipid sphingosine mediates cell death signaling, whereas its phosphorylated form, sphingosine-1-phosphate (S1P), mediates cell survival signaling. The enzyme sphingosine kinase produces S1P, and the activity of sphingosine kinase impacts the ability of cells to survive under stress and challenges. To examine the influence of sphingolipid metabolism, particularly enzymes regulating sphingosine and S1P, in mediating aging, neuronal function and stress response, we examined life history traits, locomotor capacities and heat stress responses of young and old animals using the model organism Caenorhabditis elegans. We found that C. elegans sphk-1 mutants, which lack sphingosine kinase, had shorter lifespans, reduced brood sizes, and smaller body sizes compared to wild type animals. By analyzing a panel of young and old animals with genetic mutations in the sphingolipid signaling pathway, we showed that aged sphk-1 mutants exhibited a greater decline in neuromuscular function and locomotor behavior. In addition, aged animals lacking sphk-1 were more susceptible to death induced by acute and prolonged heat exposure. On the other hand, older animals with loss of function mutations in ceramide synthase (hyl-1), which converts sphingosine to ceramide, showed improved neuromuscular function and stress response with age. This phenotype was dependent on sphk-1. Together, our data show that loss of sphingosine kinase contributes to poor animal health span, suggesting that sphingolipid signaling may be important for healthy neuronal function and animal stress response during aging.

SELECTION OF CITATIONS
SEARCH DETAIL
...