Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 904: 166313, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37586527

ABSTRACT

During wastewater treatment, micropollutants are only partly eliminated and may present a risk for human health and aquatic ecosystems. The potential impacts these substances may have are currently underestimated due to the lack in available concentrations that lie below the limit of quantification (LOQ) for an important set of micropollutants. Here, the potential impacts due to 261 organic micropollutants on human health and aquatic environments were investigated at the scale of France. Even with concentrations below the LOQ, certain micropollutants were found to have a significant potential impact. For unmeasured concentrations, a global concentration distribution built from several datasets with different LOQ was used. By disregarding the unmeasured micropollutants, the potential impacts have been underestimated by >300 % on both human health and aquatic environments. Certain substances, such as hydrazine, endrin, or 2,3,7,8-TetraCDD, could lead to very strong potential impacts, even with unmeasured concentration levels. Moreover, the usual convention of LOQ/2 to replace unmeasured concentrations also appeared to overestimate the potential impact. The present work can be adapted to any other compartment or geographical context.

2.
Biometrics ; 70(3): 629-38, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24946018

ABSTRACT

Follow-up is more and more used in medicine/doping control to identify abnormal results in an individual. Currently, follow-ups are mostly carried out variable by variable using "reference intervals" that contain the values observable in 100(1-α)% of healthy/undoped individuals. Observations of the evolution of the variables over time in a sample of N healthy/undoped individuals, allows these reference intervals to be individualized by taking into account the possible effect of covariables and some previous observations of these variables obtained when the individual was healthy/undoped. For each variable these individualized intervals should contain 100(1-α)% of observable values compatible with previous observed values in this individual. General methods to build these intervals are available, but they allow only a variable by variable follow-up whatever the possible correlations over time between them. In this article, we propose a general method to jointly follow-up several correlated variables over time. This methodology relies on a multivariate linear mixed effects model. We first provide a method to estimate the model's parameters. In an asymptotic framework (N large enough), we then derive a (1-α) individualized prediction region. Sometimes, the sample size N is not large enough for the asymptotic framework to give a reasonable prediction region. It is for this reason, we propose and compare three different prediction regions that should behave better for small N. Finally, the whole methodology is illustrated by the follow-up of kidney insufficiency in cats.


Subject(s)
Data Interpretation, Statistical , Longitudinal Studies , Models, Statistical , Multivariate Analysis , Outcome Assessment, Health Care/methods , Sample Size , Biometry/methods , Computer Simulation , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...