Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 819: 153114, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35041945

ABSTRACT

Carbon dioxide (CO2) and methane (CH4) are the most important greenhouse gases (GHGs) due to their significant role in anthropogenic global climate change. The spatio-temporal variations of their concentration are characterized by the terrestrial biosphere, seasonal weather patterns and anthropogenic emissions. Hence, to understand the variability in regional surface GHG fluxes, high precision GHGs measurements were initiated by the National Remote Sensing Center (NRSC) of India. We report continuous CO2 and CH4measurements during 2014 to 2017 for the first time from Shadnagar, a suburban site in India. Annual mean CO2 and CH4 concentrations are 399.56 ± 5.46 ppm and 1.929 ± 0.09 ppm, respectively, for 2017. After the strong El Niño of 2015-2016, an abnormal rise in CO2 growth rate of 5.5 ppm year-1 was observed in 2017 at the study site, compared to 3.03 ppm year-1 at Mauna Loa. Thus, the repercussion of the El Niño effect diminishes the net uptake by the terrestrial biosphere accompanied by increased soil respiration. Seasonal tracer to tracer correlation between CO2 and CH4 was also analyzed to characterize the possible source-sink relationship between the species. We compared CO2 and CH4 concentrations to simulations from an atmospheric chemistry transport model (ACTM). The seasonal phases of CH4 were well captured by the ACTM, whereas the seasonal cycle amplitude of CO2 was underestimated by about 30%.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Carbon Dioxide/analysis , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Seasons , Soil
2.
Sci Total Environ ; 816: 151607, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34798084

ABSTRACT

The increase in frequency and severity of heat waves during the pre-monsoon season (March-May) over Northwest India in recent decades is alarming. This study investigates the causative mechanism for warming through the forcing induced by planetary albedo changes over Northwest India, a hotspot for land-cover change. We use satellite-measured planetary albedo (α) and satellite-derived land-use-land-cover (LULC) data to estimate the impact of LULC changes from 2001 to 2018 on α and the associated radiative forcing. Over Northwest India, significant area under native land-cover, viz., barren, shrub and grass-lands, has been converted to cropland. The associated land-cover-induced changes have perturbed the radiation-budget by modifying the absorption of shortwave radiation, thereby contributing to the pronounced reduction of α as observed over this region. The diurnal-mean α has decreased by 0.016 ± 0.001 from 2001 to 2018 during pre-monsoon season which dominates α-decrease during the annual cycle over this region and contributes to the overall decreasing trend over India. Conversion of barren and shrub-lands to cropland is observed to be the greatest contributor to the α-decrease as compared to other land-cover changes. The radiative forcing due to decline in diurnal-mean α over Northwest India from 2001 to 2018 is highest during pre-monsoon at 5.99 ± 0.34 W/m2. This α-induced forcing averaged over the global land surface (0.02 W/m2) is equivalent to the corresponding direct forcing from rise in atmospheric methane concentrations during this period. We find an enhancement in near-surface heating to be associated with change in α; the decreasing trend in α during pre-monsoon has substantially enhanced near-surface extreme effective temperatures by 3.15 ± 2.61 K thus far and may further lead to more extreme heatwaves in future. Further, our findings highlight a decreasing (warming) and increasing (cooling) trend in clear-sky planetary albedo respectively over Northwest India and coastal regions, suggesting that sudden climate change could occur if one forcing dominates over the other.


Subject(s)
Climate Change , India , Seasons
3.
Environ Monit Assess ; 187(3): 140, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25716524

ABSTRACT

Drought is an important global hazard, challenging the sustainable agriculture and food security of nations. Measuring agricultural drought vulnerability is a prerequisite for targeting interventions to improve and sustain the agricultural performance of both irrigated and rain-fed agriculture. In this study, crop-generic agricultural drought vulnerability status is empirically measured through a composite index approach. The study area is Haryana state, India, a prime agriculture state of the country, characterised with low rainfall, high irrigation support and stable cropping pattern. By analysing the multiyear rainfall and crop condition data of kharif crop season (June-October) derived from satellite data and soil water holding capacity and groundwater quality, nine contributing indicators were generated for 120 blocks (sub-district administrative units). Composite indices for exposure, sensitivity and adaptive capacity components were generated after assigning variance-based weightages to the respective input indicators. Agricultural Drought Vulnerability Index (ADVI) was developed through a linear combination of the three component indices. ADVI-based vulnerability categorisation revealed that 51 blocks are with vulnerable to very highly vulnerable status. These blocks are located in the southern and western parts of the state, where groundwater quality is saline and water holding capacity of soils is less. The ADVI map has effectively captured the spatial pattern of agricultural drought vulnerability in the state. Districts with large number of vulnerable blocks showed considerably larger variability of de-trended crop yields. Correlation analysis reveals that crop condition variability, groundwater quality and soil factors are closely associated with ADVI. The vulnerability index is useful to prioritise the blocks for implementation of long-term drought management plans. There is scope for improving the methodology by adding/fine-tuning the indicators and by optimising the weights.


Subject(s)
Agriculture , Crops, Agricultural , Droughts , Water Supply/analysis , Environmental Monitoring/methods , Groundwater , India , Rain , Soil , Water Supply/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...