Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 25(6): 1695-702, 2009.
Article in English | MEDLINE | ID: mdl-19728393

ABSTRACT

Clearance of impurities such as viruses, host cell protein (HCP), and DNA is a critical purification design consideration for manufacture of monoclonal antibody therapeutics. Anion exchange chromatography has frequently been utilized to accomplish this goal; however, anion exchange adsorbents based on the traditional quaternary amine (Q) ligand are sensitive to salt concentration, leading to reduced clearance levels of impurities at moderate salt concentrations (50-150 mM). In this report, membrane adsorbers incorporating four alternative salt tolerant anion exchange ligands were examined for impurity clearance: agmatine, tris-2-aminoethyl amine, polyhexamethylene biguanide (PHMB), and polyethyleneimine. Each of these ligands provided greater than 5 log reduction value (LRV) for viral clearance of phage phiX174 (pI approximately 6.7) at pH 7.5 and phage PR772 (pI approximately 4) at pH 4.2 in the presence of salt. Under these same conditions, the commercial Q membrane adsorber provided no clearance (zero LRV). Clearance of host-cell protein at pH 7.5 was the most challenging test case; only PHMB maintained 1.5 LRV in 150 mM salt. The salt tolerance of PHMB was attributed to its large positive net charge through the presence of multiple biguanide groups that participated in electrostatic and hydrogen bonding interactions with the impurity molecules. On the basis of the results of this study, membrane adsorbers that incorporate salt tolerant anion exchange ligands provide a robust approach to impurity clearance during the purification of monoclonal antibodies.


Subject(s)
Anion Exchange Resins/chemistry , Chromatography, Ion Exchange/methods , Drug Contamination/prevention & control , Membranes, Artificial , Salts/chemistry , Adsorption , Animals , Antibodies, Monoclonal , Bacteriophages/chemistry , Bacteriophages/isolation & purification , CHO Cells , Cricetinae , Cricetulus , Hydrogen-Ion Concentration , Ligands , Proteins/isolation & purification , Serum Albumin, Bovine/metabolism
2.
Biotechnol Bioeng ; 103(5): 920-9, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19370771

ABSTRACT

Strong anion exchange chromatography has frequently been employed as a viral clearance step during downstream processing of biological therapeutics. When challenged with viruses having only slightly acidic isoelectric points, the performance of the anion exchange operation becomes highly dependent on the buffer salt concentration, with the virus log reduction value (LRV) dropping dramatically in buffers with 50-150 mM salt. In this work, a series of anion exchange membrane adsorbers utilizing alternative ligand chemistries instead of the traditional quaternary amine (Q) ligand have been developed that overcome this limitation. Four different ligands (agmatine, tris-2-aminoethyl amine, polyhexamethylene biguanide, and polyethyleneimine) achieved >5 LRV of bacteriophage PhiX174 (pI approximately 6.7) at pH 7.5 and up to 150 mM salt, compared to 0 LRV for the Q ligand. By evaluating structural derivatives of the successful ligands, three factors were identified that contributed to ligand salt tolerance: ligand net charge, ligand immobilization density on the membrane, and molecular structure of the ligand-binding group. Based on the results of this study, membrane adsorbers that incorporate alternative ligands provide a more robust and salt tolerant viral clearance-processing step compared to traditional strong anion exchange membrane adsorbers.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Bacteriophage phi X 174/isolation & purification , Filtration/methods , Micropore Filters , Salts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...