Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (151)2019 09 07.
Article in English | MEDLINE | ID: mdl-31545317

ABSTRACT

Electrospray ionization (ESI) can transfer an aqueous-phase peptide or peptide complex to the gas-phase while conserving its mass, overall charge, metal-binding interactions, and conformational shape. Coupling ESI with ion mobility-mass spectrometry (IM-MS) provides an instrumental technique that allows for simultaneous measurement of a peptide's mass-to-charge (m/z) and collision cross section (CCS) that relate to its stoichiometry, protonation state, and conformational shape. The overall charge of a peptide complex is controlled by the protonation of 1) the peptide's acidic and basic sites and 2) the oxidation state of the metal ion(s). Therefore, the overall charge state of a complex is a function of the pH of the solution that affects the peptides metal ion binding affinity. For ESI-IM-MS analyses, peptide and metal ions solutions are prepared from aqueous-only solutions, with the pH adjusted with dilute aqueous acetic acid or ammonium hydroxide. This allows for pH dependence and metal ion selectivity to be determined for a specific peptide. Furthermore, the m/z and CCS of a peptide complex can be used with B3LYP/LanL2DZ molecular modeling to discern binding sites of the metal ion coordination and tertiary structure of the complex. The results show how ESI-IM-MS can characterize the selective chelating performance of a set of alternative methanobactin peptides and compare them to the copper-binding peptide methanobactin.


Subject(s)
Metals/chemistry , Peptides/chemistry , Ion Mobility Spectrometry , Models, Molecular , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization
2.
Eur J Mass Spectrom (Chichester) ; 19(6): 463-73, 2013.
Article in English | MEDLINE | ID: mdl-24378464

ABSTRACT

The pH dependent reactivity of an analog methanobactin peptide (amb) with the sequence acetyl-His1-Cys2-Gly3-Pro4-His5-Cys6 (Mw = 694.79 Da) was investigated for its binding ability for a series of biologically active metal ions using ion mobility-mass spectrometry. Cu(II), Zn(II) and, to a lesser extent, Ni(II) were observed to form complexes with amb from 1 : 1 molar equivalent amb:metal(II) solutions at pH > 6, indicating the deprotonation of the imidazole N of His (pKa = 6.0) must occur to allow the initial anchoring of the metal(II) ion. The amb-metal(II) complexes were observed as both positive and negative ions, although the Zn(II) complexes preferred forming an overall negative ion complex which is consistent with the two thiolate groups of Cys2 and Cys6 being involved in Zn(II) coordination. The Cu(II) addition, however, always resulted in a Cys-Cys disulfide bridge in both Cu-free amb and Cu-bound amb, which excluded thiolate coordination to Cu(II). Collision cross- section measurements showed the Zn(II) and Cu(II) negative ion complexes were smaller than the positive ion complexes, suggesting Zn(II) binds most compactly via the imidazole N of His and the thiolate groups of Cys, whereas Cu(II) binds most compactly via the imidazole N of His and two deprotonated N of two amide groups on the peptide backbone. The lowest energy structures from the B3LYP/LanL2DZ level of theory showed the functional groups of His5, Cys2 and Cys6 coordinated to Zn(II), whereas the His1 and the amide nitrogens of Cys2 and Gly3 coordinated to Cu(II), producing an overall negative charged complex. The positive ion complexes of Zn(II) and Cu(II) were both shown to coordinate via the two imidazole nitrogens of His1 and His5 and either the oxygen of the backbone carbonyl of Cys6 or the oxygen of the C-terminal, respectively.


Subject(s)
Bacterial Proteins/metabolism , Copper/metabolism , Imidazoles/metabolism , Mass Spectrometry/methods , Methylosinus trichosporium/metabolism , Oligopeptides/metabolism , Zinc/metabolism , Bacterial Proteins/chemistry , Copper/chemistry , Cysteine/metabolism , Disulfides/chemistry , Disulfides/metabolism , Homeostasis , Hydrogen-Ion Concentration , Peptides/chemistry , Peptides/metabolism , Protein Binding , Structure-Activity Relationship , Zinc/chemistry
3.
Eur J Mass Spectrom (Chichester) ; 18(6): 509-20, 2012.
Article in English | MEDLINE | ID: mdl-23654196

ABSTRACT

Methanobactins (mbs) are Low molecular mass copper binding chromopeptides analogous to pyoverdin class iron-binding siderophores. Mb produced by Methylosinus trichosporium OB3b (mb-oB3b) has been used as a model molecuLe for methanobactin although the amino acid sequence of mb-OB3b differs significantly from other characterized mbs. In particular, there is the presence of a pair of cystine residues which are absent in other characterized mbs. The role of the Cys3-Cys6 in copper binding, Cu(ll) reduction and its role on the mb-OB3b structure remains in debate. Here, we use a single-step dithiothreitol treatment as an effective method in reducing the disulfide bond allowing in-depth ion mobility-mass spectrometry (IM-MS) analysis. The IM-MS results show mb-oB3b exists in the gas-phase as three different negatively-charged states and exists in multiple conformational states, when introduced via electrospray ionization from aqueous solution near physiological pH. The disulfide bond serves a structural role and is not involved in the Cu(I/ll) binding capability of mb-OB3b, with the binding of a second Cu(I/ll) related to a further deprotonation of mb-OB3b. Overall, these findings are in good correlation with expected solution-phase behavior of mb-OB3b. The results suggest IM-MS is an effective tool for better understanding the complex nature of this intriguing peptide.


Subject(s)
Copper/metabolism , Imidazoles/chemistry , Methylosinus trichosporium/chemistry , Oligopeptides/chemistry , Spectrometry, Mass, Electrospray Ionization , Binding Sites , Disulfides/chemistry , Dithiothreitol/chemistry , Equipment Design , Imidazoles/isolation & purification , Imidazoles/metabolism , Methylosinus trichosporium/metabolism , Oligopeptides/isolation & purification , Oligopeptides/metabolism , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...