Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(5)2023 05 11.
Article in English | MEDLINE | ID: mdl-37238690

ABSTRACT

Temperature and food quality are the most important environmental factors determining the performance of herbivorous insects. The objective of our study was to evaluate the responses of the spongy moth (formerly known as the gypsy moth) [Lymantria dispar L. (Lepidoptera: Erebidae)] to simultaneous variation in these two factors. From hatching to the fourth instar, larvae were exposed to three temperatures (19 °C, 23 °C, and 28 °C) and fed four artificial diets that differed in protein (P) and carbohydrate (C) content. Within each temperature regime, the effects of the nutrient content (P+C) and ratio (P:C) on development duration, larval mass, growth rate, and activities of digestive proteases, carbohydrases, and lipase were examined. It was found that temperature and food quality had a significant effect on the fitness-related traits and digestive physiology of the larvae. The greatest mass and highest growth rate were obtained at 28 °C on a high-protein low-carbohydrate diet. A homeostatic increase in activity was observed for total protease, trypsin, and amylase in response to low substrate levels in the diet. A significant modulation of overall enzyme activities in response to 28 °C was detected only with a low diet quality. A decrease in the nutrient content and P:C ratio only affected the coordination of enzyme activities at 28 °C, as indicated by the significantly altered correlation matrices. Multiple linear regression analysis showed that variation in fitness traits in response to different rearing conditions could be explained by variation in digestion. Our results contribute to the understanding of the role of digestive enzymes in post-ingestive nutrient balancing.


Subject(s)
Moths , Animals , Larva/physiology , Temperature , Diet , Peptide Hydrolases
2.
Plants (Basel) ; 11(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36559699

ABSTRACT

The Colorado potato beetle (CPB) is a serious pest of economically important Solanaceae species. The use of essential oil compounds in pest management has been proposed as an alternative to harmful chemical insecticides that disturb human health and ecosystem functioning. We examined the antifeedant activity of three concentrations (0.125%, 0.25% and 0.5%) of pure camphor and a thujone-camphor mixture against 3rd instar larvae and adults. Their efficacy was evaluated according to the degree of leaf damage and avoidance of treated leaves by the CPB. Treatment of potato leaves significantly reduced leaf damage compared to the control. Leaf protection increased at higher concentrations of the examined compounds. Camphor was more effective against larvae and the thujone-camphor mixture was more effective against adults. Additionally, adults moved faster towards the control leaf disc in the two-choice olfactometer assay if an alternative disc was treated with a thujone-camphor mixture, whereas larvae responded similarly to the two potential repellents. However, after contact with the leaf disc treated with the highest compound concentration, the larvae escaped faster from the thujone-camphor mixture than from pure camphor. In conclusion, both examined compounds are promising eco-friendly antifeedants, but their efficacy depends on the developmental stage of the beetle, compound type and applied concentration.

3.
Environ Monit Assess ; 195(1): 109, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36376774

ABSTRACT

The aim of this research was to quantify the content of hazardous elements in the needles of Norway spruce (Picea abies L.) in the natural habitats that were accumulated from thermal power plants, mines, and metal processing industry. Fifteen natural populations of the Norway spruce were sampled from the mountain ranges in Southeastern Europe (Dinaric Alps and Balkan Mountains). Two-year-old spruce needles were evaluated the content of the following hazardous elements: heavy metals cadmium, mercury, nickel, lead and zinc, and metalloid arsenic. The effect of the distance between air pollution emitters and the Norway spruce natural habitats on the hazardous elements content in needles was also evaluated. The results of the analysis of variance confirmed interpopulation differences in the content of all analyzed hazardous elements. The effect of the air pollution source (thermal power plants, mines, and industry) on the content of hazardous elements in the spruce needles was also assessed. Significant correlation was found between the distance of air pollution emitters and the amount of zinc. This study could serve as the startup point of future monitoring programs and provide new prospect of using Norway spruce needles as the bioindicator of air pollution with hazardous elements on Balkan Peninsula since the fact that the Norway spruce natural populations inhabit wide geographic range of the continental Europe, from the Balkan Peninsula, over European Alps to Scandinavia and a large-scale of altitude from 980 to 1860 m above sea level.


Subject(s)
Abies , Picea , Pinus , Anthropogenic Effects , Environmental Monitoring , Ecosystem , Norway , Zinc
4.
Front Physiol ; 13: 842314, 2022.
Article in English | MEDLINE | ID: mdl-35250641

ABSTRACT

Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae), is one of the most important pests of the common bean Phaseolus vulgaris L. Without appropriate management it may cause significant seed loss in storages. In search for means of environmentally safe and effective protection of beans we assessed biological activity of thymol, an oxygenated monoterpene present in essential oils of many aromatic plants. We studied contact toxicity of thymol on bean seeds and its effects on adult longevity and emergence in F1 generation. Furthermore, we determined acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), mixed-function oxidase (MFO), carboxylesterases (CarE) and glutathione S-transferase (GST) activities in response to 24 h exposure of beetles to sublethal and lethal thymol concentrations. Our results showed that thymol decreased adult survival, longevity and percentage of adult emergence. Higher median lethal concentration (LC50) was recorded in females indicating their higher tolerance comparing to males. Overall, activities of SOD, CAT and CarE increased at sublethal and MFO increased at both sublethal and lethal thymol concentrations. On the other hand, GST and AChE activities decreased along with the increase in thymol concentrations from sublethal (1/5 of LC50, 1/2 of LC50) to lethal (LC50). Enzyme responses to the presence of thymol on bean seed were sex-specific. In the control group females had lower CarE and higher SOD, CAT and GST activity than males. In treatment groups, females had much higher CAT activity and much lower CarE activity than males. Our results contribute to deeper understanding of physiological mechanisms underlying thymol toxicity and tolerance which should be taken into account in future formulation of a thymol-based insecticide.

5.
Plants (Basel) ; 10(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34686003

ABSTRACT

The gypsy moth (Lymantria dispar L. (Lepidoptera: Erebidae)) is a serious pest of hardwood forests. In the search for an environmentally safe means of its control, we assessed the impact of different concentrations of essential oils (EOs) from the seeds of three Apiaceae plants (anise Pimpinella anisum, dill Anethum graveolens, and fennel Foeniculum vulgare) on behavior, mortality, molting and nutritional physiology of gypsy moth larvae (GML). EOs efficacy was compared with commercial insecticide NeemAzal®-T/S (neem). The main compounds in the Eos were trans-anethole in anise; carvone, limonene, and α-phellandrene in dill; and trans-anethole and fenchone in fennel seed. At 1% EOs concentration, anise and fennel were better antifeedants and all three EOs were more toxic than neem. Neem was superior in delaying 2nd to 3rd larval molting. In the 4th instar, 0.5%, anise and fennel EOs decreased relative consumption rate more than neem, whereas all three EOs were more effective in reducing growth rate, approximate digestibility and efficiency of conversion of food into body mass leading to higher metabolic costs to GML. Decrease in consumption and metabolic parameters compared to control GML confirmed that adverse effects of the EOs stem from both pre- and post-ingestive mechanisms. The results indicate the potential of three EOs to be used for gypsy moth control.

6.
Bull Entomol Res ; 111(2): 190-199, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32778187

ABSTRACT

The Colorado potato beetle, Leptinotarsa decemlineata (Say), is one of the most destructive pest species to have developed resistance to most chemical insecticides. We determined the composition and evaluated the potential of Tanacetum parthenium L. and Tanacetum vulgare L. (Asteraceae family) essential oil (EO) application as an alternative eco-friendly control strategy against L. decemlineata. We assessed the antifeedant activity for L. decemlineata larvae and adults by estimating the damage to potato leaves treated with three concentrations of EOs dissolved in ethanol (0.125, 0.25 and 0.5%). Results showed that T. parthenium EO was more effective against larvae, and T. vulgare was more effective against adults. In an olfactometer assay, the time required to choose an untreated leaf disc did not depend on the Tanacetum species, or life stage examined. However, the concentration of EO exhibited a significant effect on the behaviour of both developmental stages. At higher EO concentrations, both third instar larvae and adults require less time to choose an untreated leaf disc. Additionally, T. parthenium EO provoked more rapid movement away from the treated leaf disc than T. vulgare, especially at the highest concentration. Successful modification of L. decemlineata behaviour by the two Tanacetum oils suggests that they possess the potential for use in potato protection.


Subject(s)
Coleoptera/drug effects , Plant Extracts/pharmacology , Tanacetum parthenium/chemistry , Animals , Behavior/drug effects , Insect Repellents/pharmacology , Larva/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Tanacetum/chemistry
7.
Insects ; 11(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846872

ABSTRACT

The bean weevil Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae) can cause significant losses in production of its primary host common bean Phaseolus vulgaris L. To avoid bean protection with environmentally risky chemical insecticides and provide sustainable and safe production of food, new pest management methods based on natural compounds are investigated. In the present study, we evaluated protective potential of the essential oil (EO) from the common thyme Thymus vulgaris L. applied on bean seeds. We assessed residual contact toxicity of thyme EO and its effects on A. obtectus longevity, oviposition and adult emergence. Furthermore, to elucidate the role of oxidative stress in thyme EO toxicity, we estimated the levels of oxidatively damaged proteins and lipids, as well as the level of thiols which have important role for antioxidant capacity. We found that thyme oil significantly reduced adult survival and longevity, induced oxidative damage to lipids and proteins and depleted protein and non-protein thiols in a concentration-dependent manner. Females appeared to be more tolerant to thyme oil treatment than males. Sublethal EO concentrations affected oxidative stress indices, deterred oviposition and strongly inhibited adult emergence. The results suggest that thyme oil has the potential to be used as an ecofriendly insecticide for A. obtectus control.

8.
J Evol Biol ; 29(4): 837-47, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26790127

ABSTRACT

Expansion of the host range in phytophagous insects depends on their ability to form an association with a novel plant through changes in host-related traits. Phenotypic plasticity has important effects on initial survival of individuals faced with a new plant, as well as on the courses of evolutionary change during long-term adaptation to novel conditions. Using experimental populations of the seed beetle that evolved on ancestral (common bean) or novel (chickpea) host and applying reciprocal transplant at both larval and adult stage on the alternative host plant, we studied the relationship between the initial (plastic) phases of host-shift and the subsequent stages of evolutionary divergence in life-history strategies between populations exposed to the host-shift process. After 48 generations, populations became well adapted to chickpea by evolving the life-history strategy with prolonged larval development, increased body mass, earlier reproduction, shorter lifespan and decreased plasticity of all traits compared with ancestral conditions. In chickpea-adapted beetles, negative fitness consequences of low plasticity of pre-adult development (revealed as severe decrease in egg-to-adult viability on beans) exhibited mismatch with positive effects of low plasticity (i.e. low host sensitivity) in oviposition and fecundity. In contrast, beetles adapted to the ancestral host showed high plasticity of developmental process, which enabled high larval survival on chickpea, whereas elevated plasticity in adult behaviour (i.e. high host sensitivity) resulted in delayed reproduction and decreased fecundity on chickpea. The analysis of population growth parameters revealed significant fluctuation during successive phases of the host-shift process in A. obtectus.


Subject(s)
Adaptation, Physiological , Coleoptera/physiology , Life History Traits , Animals , Body Size/physiology , Coleoptera/growth & development , Fabaceae/physiology , Larva , Longevity/physiology , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...