ABSTRACT
Insect cuticular lipids, especially epicuticular hydrocarbons (CHC), have a significant role in insect ecology and interactions with other organisms, including fungi. The CHC composition of a specific insect species may influence the outcome of the interaction with a specific fungal strain. Some insects, such as Piezodorus guildinii, have low susceptibility towards fungal infections seemingly due to their CHC composition. The entomopathogenic fungus Beauveria bassiana can assimilate CHC and incorporate them as building blocks via cytochrome P450 monooxygenases (CYPs). However, little is known about other enzymes that promote the degradation/assimilation of these cuticular components. In this study, we performed a transcriptomic analysis to evaluate the in vitro response of two virulence-contrasting B. bassiana strains when grown on three different P. guildinii CHC sources. We found a different expression profile of virulence-related genes, as well as different GO and KEGG parameters enriched at 4 days post-inoculation, which could help account for the intrinsic virulence and for an alkane-priming virulence enhancement effect. The hypovirulent strain predominantly showed higher expression of cuticle penetration genes, including chitinases, proteases, and CYPs, with GO term categories of "heme binding," "monooxygenase activity," and "peroxisome" pathways enriched. The hypervirulent strain showed higher expression of cell wall remodeling and cell cycle genes, and cuticle adhesion and a distinct set of CYPs, with GO categories of "DNA-binding transcription factor activity" and KEGG pathways corresponding to "meiosis-yeast" and "cell cycle" enriched. These results suggest a delay and alternate routes in pathogenicity-related metabolism in the hypovirulent strain in comparison with the hypervirulent strain. KEY POINTS: â¢Transcriptomics of two B. bassiana strains grown in P. guildinii cuticular components â¢Virulence-related genes correlated with virulence enhancement towards P. guildinii â¢Differentially expressed genes, GOs and KEGGs showed different metabolic timelines associated with virulence.
Subject(s)
Beauveria , Animals , Virulence , Insecta/microbiology , Gene Expression Profiling , Cytochrome P-450 Enzyme System/metabolism , Lipids , Fungal Proteins/genetics , Fungal Proteins/metabolismABSTRACT
BACKGROUND: The redbanded stink bug Piezodorus guildinii (Heteroptera: Pentatomidae) is one of the most important species affecting soybean crops in southern South America. Capillary gas chromatography coupled to mass spectrometry was used to characterize the epicuticular hydrocarbon profiles of field-collected insects, and to identify differences in their composition between fifth-instar nymphs and adults, males and females, and between bugs collected in insecticide-treated and insecticide-free soybean crops. RESULTS: Straight chain saturated n-C27 and n-C29, and monomethyl and dimethyl chains of C31 and C33 were the most abundant compounds. A group of volatile hydrocarbons with n-C13 and n-C15 as the predominant compounds were also detected. The hydrocarbon pattern was different between nymphs and adults, either males or females. Heneicosene was almost exclusively detected in adult males and was the most important component to differentiate between both sexes, followed by tricosadiene. The total hydrocarbon amount was significantly higher in nymphs, males and females collected in insecticide-treated fields compared with insects obtained from untreated fields. CONCLUSION: Differences were found in the epicuticular hydrocarbon pattern among nymphs and adults, as well as sexual dimorphism in adult stink bugs. Interestingly, an alteration was also found in the hydrocarbon profile of insects collected in insecticide-treated soybean crops and its relevance is discussed within a pest management context.