Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 55(11): 5118-26, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27163727

ABSTRACT

The platinum salt C[PtL2], where C = [(R)-Ph(Me)HC*-NMe3](+) and [PtL2](-) = radical monoanion based on [4', 5': 5, 6][1, 4]dithiino[2,3-b]quinoxaline-1',3'dithiolato, shows a variety of properties both in solution and in the solid state thanks to the electronic and/or structural features of the ligand. The complex crystallizes in the chiral space group P1 due to the presence of the enantiopure cation (R)-Ph(Me)HC*-NMe3(+), and it shows paramagnetic behavior relatable to the [PtL2](-) radical monoanion. This anionic complex is redox active and shows a strong near-infrared absorbance peak at 1085 nm tunable with the oxidation state of the complex. This complex exhibits a proton-dependent emission at 572 nm in solution at room temperature. The excitation band corresponds to the HOMO-1 (π-orbitals of the S2C2S2 system) → LUMO (π-orbitals of the quinoxaline and benzene-like moieties) transition suggesting that emission is mainly ligand centered in character. The luminescent properties are highly unusual, since the emission falls well above the energy of the lowest energy absorption (anti-Kasha behavior). Joint experimental and density functional theory (DFT) and time-dependent DFT studies are discussed to provide a satisfactory structure/property relationship.

2.
Dalton Trans ; 43(19): 7006-19, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24626345

ABSTRACT

Here we report on new tris(haloanilato)metallate(III) complexes with general formula [A]3[M(X2An)3] (A = (n-Bu)4N(+), (Ph)4P(+); M = Cr(III), Fe(III); X2An = 3,6-dihalo derivatives of 2,5-dihydroxybenzoquinone (H4C6O4), chloranilate (Cl2An(2-)), bromanilate (Br2An(2-)) and iodanilate (I2An(2-))), obtained by a general synthetic strategy, and their full characterization. The crystal structures of these Fe(III) and Cr(III) haloanilate complexes consist of anions formed by homoleptic complexes formulated as [M(X2An)3](3-) and (Et)3NH(+), (n-Bu)4N(+), or (Ph4)P(+) cations. All complexes exhibit octahedral coordination geometry with metal ions surrounded by six oxygen atoms from three chelate ligands. These complexes are chiral according to the metal coordination of three bidentate ligands, and both Λ and Δ enantiomers are present in their crystal lattice. The packing of [(n-Bu)4N]3[Cr(I2An)3] (5a) shows that the complexes form supramolecular dimers that are held together by two symmetry related I···O interactions (3.092(8) Å), considerably shorter than the sum of iodine and oxygen van der Waals radii (3.50 Å). The I···O interaction can be regarded as a halogen bond (XB), where the iodine behaves as the XB donor and the oxygen atom as the XB acceptor. This is in agreement with the properties of the electrostatic potential for [Cr(I2An)3](3-) that predicts a negative charge accumulation on the peripheral oxygen atoms and a positive charge accumulation on the iodine. The magnetic behaviour of all complexes, except 5a, may be explained by considering a set of paramagnetic non-interacting Fe(III) or Cr(III) ions, taking into account the zero-field splitting effect. The presence of strong XB interactions in 5a are able, instead, to promote antiferromagnetic interactions among paramagnetic centers at low temperature, as shown by the fit with the Curie-Weiss law, in agreement with the formation of halogen-bonded supramolecular dimers.

3.
Inorg Chem ; 52(17): 10031-40, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23968133

ABSTRACT

A simple change of the substituents in the bridging ligand allows tuning of the ordering temperatures, Tc, in the new family of layered chiral magnets A[M(II)M(III)(X2An)3]·G (A = [(H3O)(phz)3](+) (phz = phenazine) or NBu4(+); X2An(2-) = C6O4X2(2-) = 2,5-dihydroxy-1,4-benzoquinone derivative dianion, with M(III) = Cr, Fe; M(II) = Mn, Fe, Co, etc.; X = Cl, Br, I, H; G = water or acetone). Depending on the nature of X, an increase in Tc from ca. 5.5 to 6.3, 8.2, and 11.0 K (for X = Cl, Br, I, and H, respectively) is observed in the MnCr derivative. Furthermore, the presence of the chiral cation [(H3O)(phz)3](+), formed by the association of a hydronium ion with three phenazine molecules, leads to a chiral structure where the Δ-[(H3O)(phz)3](+) cations are always located below the Δ-[Cr(Cl2An)3](3-) centers, leading to a very unusual localization of both kinds of metals (Cr and Mn) and to an eclipsed disposition of the layers. This eclipsed disposition generates hexagonal channels with a void volume of ca. 20% where guest molecules (acetone and water) can be reversibly absorbed. Here we present the structural and magnetic characterization of this new family of anilato-based molecular magnets.

4.
Dalton Trans ; 42(34): 12429-39, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-23863989

ABSTRACT

Mixing [M(Et2dazdt)2](BF4)2 [M = Ni(II), Pd(II), Pt(II); Et2dazdt = N,N'-diethyl-perhydrodiazepine-2,3-dithione] with (Bu4N)2[M(mnt)2] (mnt = maleonitrile-2,3-dithiolate) in CH3CN produces the known mixed ligand dithiolene complex [Ni(Et2dazdt)(mnt)] in the nickel case and ion-pair salts [M(Et2dazdt)2][M(mnt)2] in the palladium (1) and platinum (2) cases. Structural characterization of 2 shows that the anionic (donor) and cationic (acceptor) complexes form an irregular stack that lies in the bc crystallographic plane. The shortest contacts exchanged by the anion and cation molecules within each stack are those occurring through the hydrogen atoms of the CH2 groups of Et2dazdt and the Pt(2)-S(22) segment (d(H(81a)-S(22) = 2.981(3) Å) and the nitrogen atom of the cyano group of mnt and the carbon atom of one of the thione moieties (d(N(12)-C(11) = 3.179(3) Å). The Pt atom of [Pt(mnt)2](2-) is surrounded by two hydrogen atoms of the Et2dazdt ligand, whereas the Pt atom of [Pt(Et2dazdt)2](2+) is surrounded by two carbon atoms of the dithiolate moiety of mnt. Intramolecular interactions are due to contacts exchanged mainly through H-atoms, which are suitable to mediate charge-transfer (CT) interactions. In fact, these salts are characterized by a long wavelength CT peak [λmax = 905 nm (1), 937 nm (2)], which makes them candidates as near-infrared pigments, whose properties are tunable with the redox features of the components, the energy of the NIR absorption being relatable to the driving force of electron transfer from the donor (dianion) to the acceptor (dication). A thorough description of interactions occurring between the complex anions and complex cations has been achieved by investigating the Hirshfeld surface (HS) properties. Computational methods are in agreement with experimental findings and allow us to highlight the electronic features of the components of these CT salts, providing a structure-property relationship, useful in designing new candidates to optimize the desired properties.


Subject(s)
Coordination Complexes/chemistry , Palladium/chemistry , Platinum/chemistry , Salts/chemistry , Toluene/analogs & derivatives , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Electrochemical Techniques , Ions/chemistry , Molecular Conformation , Quantum Theory , Toluene/chemistry
5.
Inorg Chem ; 52(1): 423-30, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23244518

ABSTRACT

Two new isostructural molecular metals-(BDH-TTP)(6)[M(III)(C(5)O(5))(3)]·CH(2)Cl(2) (BDH-TTP = 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, where M = Fe (1) and Ga (2))-have been prepared and fully characterized. Compound 1 is a molecular conductor showing paramagnetic behavior, which is due to the presence of isolated [Fe(C(5)O(5))(3)](3-) complexes with high-spin S = (5)/(2) Fe(III) metal ions. The conductivity originates from the BDH-TTP organic donors arranged in a κ-type molecular packing. At 4 kbar, compound 1 behaves as a metal down to ∼100 K, showing high conductivity (∼10 S cm(-1)) at room temperature. When applying a pressure higher than 7 kbar, the metal-insulator (M-I) transition is suppressed and the compound retains the metallic state down to low temperatures (2 K). For 1, ESR signals have been interpreted as being caused by the fine structure splitting of the high-spin (S = 5/2) state of Fe(III) in the distorted octahedral crystal field from the ligands. At 4 kbar, the isostructural compound 2 behaves as a metal down to ∼100 K, although it is noteworthy that the M-I transition is not suppressed, even at pressures of 15 kbar. For 2, only the signal assigned to delocalized π-electrons has been observed in the ESR measurements.


Subject(s)
Gallium/chemistry , Iron/chemistry , Organometallic Compounds/chemistry , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Stereoisomerism
6.
Inorg Chem ; 51(9): 5360-7, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22530797

ABSTRACT

The reaction of the croconate dianion (C(5)O(5))(2-) with a Fe(III) salt has led, unexpectedly, to the formation of the first example of a discrete Fe(II)-croconate complex without additional coligands, K(4)[Fe(C(5)O(5))(2)(H(2)O)(2)](HC(5)O(5))(2)·4H(2)O (1). 1 crystallizes in the monoclinic P2(1)/c space group and presents discrete octahedral Fe(II) complexes coordinated by two chelating C(5)O(5)(2-) anions in the equatorial plane and two trans axial water molecules. The structure can be viewed as formed by alternating layers of trans-diaquabis(croconato)ferrate(II) complexes and layers containing the monoprotonated croconate anions, HC(5)O(5)(-), and noncoordinated water molecules. Both kinds of layers are directly connected through a hydrogen bond between an oxygen atom of the coordinated dianion and the protonated oxygen atom of the noncoordinated croconate monoanion. A H-bond network is also formed between the coordinated water molecule and one oxygen atom of the coordinated croconate. This H-bond can be classified as strong-moderate being the O···O bond distance (2.771(2) Å) typical of moderate H-bonds and the O-H···O bond angle (174(3)°) typical of strong ones. This H-bond interaction leads to a quadratic regular layer where each [Fe(C(5)O(5))(2)(H(2)O)(2)](2-) anion is connected to its four neighbors in the plane through four equivalent H-bonds. From the magnetic point of view, these connections lead to an S = 2 quadratic layer. The magnetic properties of 1 have been reproduced with a 2D square lattice model for S = 2 ions with g = 2.027(2) and J = 4.59(3) cm(-1). This model reproduces quite satisfactorily its magnetic properties but only above the maximum. A better fit is obtained by considering an additional antiferromagnetic weak interlayer coupling constant (j) through a molecular field approximation with g = 2.071(7), J = 2.94(7) cm(-1), and j = -0.045(2) cm(-1) (the Hamiltonian is written as H = -JS(i)S(j)). Although this second model might still be improved since there is also an extra contribution due to the presence of ZFS in the Fe(II) ions, it confirms the presence of weak ferromagnetic Fe-Fe interactions through H-bonds in compound 1 which represents one of the rare examples of ferromagnetic coupling via H-bonds.

7.
Inorg Chem ; 50(19): 9337-44, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21888332

ABSTRACT

The electrochemical oxidation of an acetone solution containing [Mn(III) (5-MeOsaltmen)(H(2)O)](2)(PF(6))(2) (5-MeOsaltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(5-methoxysalicylideneiminate)) and (NBu(4))[Ni(dmit)(2)] (dmit(2-) = 2-thioxo-1,3-dithiole-4,5-dithiolate) afforded a hybrid material, [Mn(5-MeOsaltmen)(acetone)](2)[Ni(dmit)(2)](6) (1), in which [Mn(2)](2+) single-molecule magnets (SMMs) with an S(T) = 4 ground state and [Ni(dmit)(2)](n-) molecules in a charge-ordered state (n = 0 or 1) are assembled in a layer-by-layer structure. Compound 1 crystallizes in the triclinic space group P1 with an inversion center at the midpoint of the Mn···Mn dimer. The [Mn(2)](2+) unit has a typical nonplanar Mn(III) dimeric core and is structurally consistent with previously reported [Mn(2)] SMMs. The six [Ni(dmit)(2)](n-) (n = 0 or 1) units have a square-planar coordination geometry, and the charge ordering among them was assigned on the basis of ν(C═C) in IR reflectance spectra (1386, 1356, 1327, and 1296 cm(-1)). The [Mn(2)](2+) SMM and [Ni(dmit)(2)](n-) units aggregate independently to form hybrid frames. Electronic conductivity measurements revealed that 1 behaved as a semiconductor (ρ(rt) = 2.1 × 10(-1) Ω·cm(-1), E(a) = 97 meV) at ambient pressure and as an insulator at 1.7 GPa (ρ(1.7GPa) = 4.5 Ω·cm(-1), E(a) = 76 meV). Magnetic measurements indicated that the [Mn(2)](2+) units in 1 behaved as S(T) = 4 SMMs at low temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...