Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 105(15): 154501, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-21230909

ABSTRACT

The binary path selection of droplets reaching a T junction is regulated by time-delayed feedback and nonlinear couplings. Such mechanisms result in complex dynamics of droplet partitioning: numerous discrete bifurcations between periodic regimes are observed. We introduce a model based on an approximation that makes this problem tractable. This allows us to derive analytical formulae that predict the occurrence of the bifurcations between consecutive regimes, establish selection rules for the period of a regime, and describe the evolutions of the period and complexity of droplet pattern in a cycle with the key parameters of the system. We discuss the validity and limitations of our model which describes semiquantitatively both numerical simulations and microfluidic experiments.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 016317, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19658816

ABSTRACT

We present experimental, numerical, and theoretical studies of droplet flows in hydrodynamic networks. Using both millifluidic and microfluidic devices, we study the partitioning of monodisperse droplets in an asymmetric loop. In both cases, we show that droplet traffic results from the hydrodynamic feedback due to the presence of droplets in the outlet channels. We develop a recently-introduced phenomenological model [W. Engl, Phys. Rev. Lett. 95, 208304 (2005)] and successfully confront its predictions to our experimental results. This approach offers a simple way to measure the excess hydrodynamic resistance of a channel filled with droplets. We discuss the traffic behavior and the variations in the corresponding hydrodynamic resistance length L_{d} and of the droplet mobility beta , as a function of droplet interdistance and confinement for channels having circular or rectangular cross sections.

3.
Phys Rev Lett ; 102(8): 085702, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19257754

ABSTRACT

We introduce a new dynamic light scattering method, termed photon correlation imaging, which enables us to resolve the dynamics of soft matter in space and time. We demonstrate photon correlation imaging by investigating the slow dynamics of a quasi-two-dimensional coarsening foam made of highly packed, deformable bubbles and a rigid gel network formed by dilute, attractive colloidal particles. We find the dynamics of both systems to be determined by intermittent rearrangement events. For the foam, the rearrangements extend over a few bubbles, but a small dynamical correlation is observed up to macroscopic length scales. For the gel, dynamical correlations extend up to the system size. These results indicate that dynamical correlations can be extremely long-ranged in jammed systems and point to the key role of mechanical properties in determining their nature.

4.
Phys Rev Lett ; 93(22): 228302, 2004 Nov 26.
Article in English | MEDLINE | ID: mdl-15601124

ABSTRACT

Multispeckle x-ray photon correlation spectroscopy was employed to characterize the slow dynamics of a suspension of highly charged, nanometer-sized disks. At wave vectors q corresponding to interparticle length scales, the dynamic structure factor follows a form f(q,t) approximately exp([-(t/tau)(beta)], where beta approximately 1.5. The relaxation time tau increases with the sample age t(a) approximately as tau approximately t(1.8)(a) and decreases with q as tau approximately q(-1). Such behavior is consistent with models that describe the dynamics in disordered elastic media in terms of strain from random, local structural rearrangements. The measured amplitude of f(q,t) varies with q in a manner that implies caged particle motion. The decrease in the range of this motion and an increase in suspension conductivity with increasing t(a) indicate a growth in interparticle repulsion as the mechanism for internal stress development implied by these models.


Subject(s)
Aluminum Silicates/chemistry , Colloids/chemistry , Models, Chemical , Models, Molecular , Nanotubes/chemistry , Clay , Computer Simulation , Kinetics , Models, Statistical , Molecular Conformation , Particle Size , Static Electricity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...