Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 467: 116491, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36990228

ABSTRACT

Although reptiles are non-target organisms of pesticide applications, their ecological niche and trophic role suggest that the use of these compounds in agriculture can have toxicological effects on them. Our recent field study on Italian wall lizard Podarcis siculus in hazelnut orchards evidenced that the use of pesticides-mixtures, consisting of thiophanate-methyl (TM), tebuconazole (TEB), deltamethrin (DM), lambda-cyhalothrin (LCT), besides copper sulphate, induced an increase of the total antioxidant capacity toward hydroxyl radicals and caused DNA damage; however, it did not cause neurotoxicity, and did not induce the glutathione-S-transferases' activities. These results raised some questions which were answered in this study by carrying out analyses on 4 biomarkers and 5 chemical substances in the tissues of non-target organisms coming from treated fields: cytochrome P450, catalase, total glutathione, and malondialdehyde, TM, TEB, DM, LCT and Cu. Our results highlighted a partial accumulation of different chemicals, the involvement of two important mechanisms of defence, and some cellular damages after exposure to the considered pesticides. In details, 1) LCT and DM were not accumulated in lizard muscle, copper remained at basal levels, whereas TM and TEB were uptaken with a partial metabolization of TM; 2) the cytochrome P450 and the catalase were involved in lizard biochemical responses to pesticides-mixtures used for "conventional" farming treatment; 3) "conventional" treatment with pesticides caused damage to lipids, besides DNA, probably related to the excess of hydroxyl radicals.


Subject(s)
Lizards , Pesticides , Animals , Pesticides/toxicity , Catalase , Lizards/physiology , Thiophanate , Glutathione
3.
Front Public Health ; 10: 968296, 2022.
Article in English | MEDLINE | ID: mdl-36211646

ABSTRACT

In the last century, many Mediterranean coastal areas have been subjected to anthropogenic disturbances from industrial activities, uncontrolled landfills, shipyards, and high maritime traffic. The Augusta Bay (eastern Sicily, Italy) represents an example of a strongly impacted coastal environment with an elevated level of sediments contamination due to the presence of one of the largest European petrochemical plants, combined with an extensive commercial and military harbor. The most significant contaminants were represented by mercury (Hg) and hexachlorobenzene (HCB), derived from a former chlor-alkali plant, and other organic compounds like polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Since the 1970s, Augusta Bay has become internationally recognized as a contaminated marine environment, although very little information is available regarding the temporal trend of contaminants bioavailability and biological impacts on aquatic organisms. In this study, the Hg and HCB concentrations were investigated over 10 years (from 2003 to 2013) in sediments and invertebrate and vertebrate organisms; these two contaminants' ecotoxicity was further evaluated at a biochemical and cellular level by analyzing the induction of organic biotransformation processes and DNA damages. The results showed high concentrations of Hg and HCB in sediments and their strong bioaccumulation in different species with significantly higher values than those measured in reference sites. This trend was paralleled by increased micronuclei frequency (DNA damage biomarker) and activity of the biotransformation system. While levels of chemicals in sediments remained elevated during the time course, their bioavailability and biological effects showed a gradual decrease after 2003, when the chlor-alkali plant was closed. Environmental persistence of Hg and HCB availability facilitates their bioaccumulation and affects the health status of marine organisms, with possible implications for environmental risk, pollutants transfer, and human health.


Subject(s)
Mercury , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Alkalies , Aquatic Organisms , Bays , Biological Availability , Environmental Monitoring/methods , Geologic Sediments/chemistry , Hexachlorobenzene , Humans , Mercury/analysis , Mercury/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
4.
Ecotoxicol Environ Saf ; 148: 787-798, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29195222

ABSTRACT

The Vallona lagoon is a transitional area located in the Po River delta (NE, ITALY) traditionally exploited for Manila clam (Ruditapes philippinarum) farming. During 2007-2008, a pipeline was buried in the middle of the lagoon to connect an off-shore structure to facilities on land. PAH levels were monitored in Manila clams and sediments before, during and after the pipeline construction to assess the impact of the activities through the pattern of distribution of the PAH compounds. PAH bioaccumulation in clams displayed seasonal fluctuations with higher levels in autumnal and wintry surveys than in spring-summer. Principal component analysis applied to PAHs in clams highlighted a petrogenic input during ante operam period and a pyrolytic origin during the burying activities. On the contrary, sediment PAH concentrations resulted quite similar both among sites and periods. Biota-Sediment-Accumulation-Factor values also confirmed that sediments were not the major source of PAH pollution for clams in this study. The welfare of clams was examined through two physiological indices (condition index and survival in air) to check the effects of the activities on a commercial resource. Both physiological indices exhibited seasonal variations connected to natural endogenous and exogenous factors; however survival in air was the most sensitive index in highlighting the effects of the pipeline burying activities. Finally, to ensure that PAH bioavailability assessment was not affected by seasonal variation of soft tissues of molluscs, PAHs/shell weight index was applied. Higher levels of this index were observed before and during the burying activities, whilst, after that, values significantly lowered. Moreover, the normalization enabled us to highlight the PAH uptake from clams in some particular periods and to compare different populations in a long-term biomonitoring program with data obtained from different periods of the year.


Subject(s)
Bivalvia/chemistry , Environmental Monitoring/methods , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Bivalvia/drug effects , Italy , Mediterranean Sea , Rivers/chemistry , Seasons
5.
Mar Pollut Bull ; 59(8-12): 245-56, 2009.
Article in English | MEDLINE | ID: mdl-19837440

ABSTRACT

The coastal zone of the disused industrial site of Bagnoli, has been studied since 1999 in order to highlight chemical and ecological features of pollution, mainly due to a steel plant. This further study was performed in order to check the foraminiferal response to changes in sediment grain-size and contaminant concentrations and to recognise the actual effects of the environmental stress determined by industrial pollution on the foraminiferal assemblages. This was attained by considering a wider area than in the previous studies so as to recognise the possible reference conditions. Very high contamination, mainly due to Cu, Fe, Hg, Mn, Ni, Pb, Zn and PAHs, was recorded in the marine sediments close to the steel plant. Contaminant concentrations and sediment composition were recognised as important factors influencing the foraminiferal response by means of statistical analysis. The foraminiferal abnormality index (FAI) is positively correlated with heavy metals concentration, exceeding the natural threshold in front of the plant. Furthermore, increasing pollution levels correspond to the increase of pollution-tolerant species in the assemblage.


Subject(s)
Environmental Monitoring , Foraminifera/physiology , Geologic Sediments/analysis , Industry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Italy , Oceans and Seas , Particle Size
6.
J Med Food ; 11(4): 789-94, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19012514

ABSTRACT

Stingless bees (Tribe Meliponini) are a diverse group of highly eusocial bees distributed throughout the tropics and subtropics. Trigona carbonaria honey, from Australia, was characterized by traditional physicochemical parameters (acidity, sugars, diastase, electrical conductivity, hydroxymethylfurfural, invertase, nitrogen, and water content) and other compositional factors (flavonoids, polyphenols, organic acids, and water activity), as well as total antioxidant capacity and radical scavenging activity. For the Australian T. carbonaria, the traditional analytical parameters were similar to those previously reported for neotropical stingless bee honey and confirm that honeys produced by Meliponini bees possess several physicochemical properties that are distinctly different from Apis mellifera honey, with higher values of moisture (26.5 +/- 0.8 g of water/100 g of honey), water activity (0.74 +/- 0.01), electrical conductivity (1.64 +/- 0.12 mS/cm), and free acidity (124.2 +/- 22.9 mEq/kg of honey) and a very low diastase activity (0.4 +/- 0.5 diastase number) and invertase activity (5.7 +/- 1.5 invertase number). The sugar spectrum was quite different from that of A. mellifera honey, with 20.3 +/- 2.9 g of maltose/100 g of honey. The values of pH (4.0 +/- 0.1), lactonic acidity (4.7 +/- 0.8 mEq/kg of honey), sucrose (1.8 +/- 0.4 g/100 g of honey), and fructose/glucose ratio (1.42 +/- 0.13) fell in the same ranges as those of A. mellifera honey. Citric (0.23 +/- 0.09) and malic (0.12 +/- 0.03) acid concentrations (in g/kg of honey) of T. carbonaria honeys were in the range described for A. mellifera honey. D-Gluconic was more concentrated (9.9 +/- 1.3 g/kg of honey), in the range of Italian Castanea, Thymus, Arbutus, and honeydew honeys. Flavonoid content was 10.02 +/- 1.59 mg of quercetin equivalents/100 g of honey, and polyphenol contents were 55.74 +/- 6.11 mg of gallic acid equivalents/100 g of honey. The antioxidant activity, expressed as percentage of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) cation (ABTS(*+)) decolorization, was 233.96 +/- 50.95 microM Trolox equivalents, and free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH(*)) depletion was 48.03 +/- 12.58 equivalents of ascorbic acid. All reported values are averages +/- standard deviation. The antioxidant activity can represent an important added value for T. carbonaria honey, to initiate a medicinal approach for both nutritional and pharmaceutical applications, besides further physicochemical characterization.


Subject(s)
Antioxidants/pharmacology , Carbohydrates/analysis , Chemical Phenomena/drug effects , Flavonoids/analysis , Free Radical Scavengers/pharmacology , Honey , Animals , Australia , Bees , Honey/analysis
7.
Mar Environ Res ; 66(1): 24-6, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18384874

ABSTRACT

This work investigated the natural variability of several biomarkers in Tapes philippinarum and Mytilus galloprovincialis, sampled from Northern Adriatic where these organisms are important sentinel species for future environmental impact assessment. Levels of metallothioneins, peroxisomal enzymes and acetylcholinesterase, showed a significant seasonality and marked differences between clams and mussels. Among antioxidant enzymes, catalase and GST decreased during the warmer period, the latter enzyme activity resulting particularly high in clams. The total oxyradical scavenging capacity toward peroxyl radicals decreased in mussels from winter to summer, indicating a prooxidant challenge due to higher seawater temperature and intensity of light irradiance. Lysosomal membrane stability did not exhibit significant seasonal variations, while some variations were observed for DNA damages. Overall results indicated a significant influence of seasonal variability on several biomarkers and species-specific differences which should be considered to discriminate the appearance of anthropogenic disturbance.


Subject(s)
Bivalvia/cytology , Bivalvia/metabolism , Mytilus/cytology , Mytilus/metabolism , Oxidative Stress/physiology , Seasons , Animals , Biomarkers/analysis , Mediterranean Region , Oceans and Seas , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...