Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(2): 023507, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35232131

ABSTRACT

A new high heat flux ball-pen probe head installed on the midplane manipulator is currently being used in ASDEX-Upgrade (AUG). The probe was designed to withstand high heat fluxes making possible the investigation of the plasma edge under harsh conditions, such as low power H-mode. Composed of seven pins (four Langmuir probes, mounted in two Mach probe pairs, and three ball-pen probes), the new probe head allows us to measure several plasma parameters simultaneously and with high temporal resolution. A novel method to correct the sheath potential dynamically accounting for the total secondary electron emission is introduced together with applications to obtain the electron temperature and plasma potential profiles. The total secondary electron emission yield is obtained from particle in cell simulations in AUG condition and probe realistic impact angle with respect to the magnetic field. Finally, the probe capability to investigate turbulence around the separatrix of AUG is discussed.


Subject(s)
Electrons , Hot Temperature , Temperature
2.
Rev Sci Instrum ; 85(11): 11E431, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430338

ABSTRACT

The core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to ∼1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described. Several further upgrades of the TS system, like a triggering unit and piezo motor driven vacuum window shutter, are introduced as well. The edge TS system, together with the core TS, is now in routine operation and provides electron temperature and density profiles.

3.
Rev Sci Instrum ; 81(10): 10D511, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033866

ABSTRACT

A new Thomson scattering diagnostic has been designed and is currently being installed on the COMPASS tokamak in IPP Prague in the Czech Republic. The requirements for this system are very stringent with approximately 3 mm spatial resolution at the plasma edge. A critical part of this diagnostic is the laser source. To achieve the specified parameters, a multilaser solution is utilized. Two 30 Hz 1.5 J Nd:YAG laser systems, used at the fundamental wavelength of 1064 nm, are located outside the tokamak area at a distance of 20 m from the tokamak. The design of the laser beam transport path is presented. The approach leading to a final choice of optimal focusing optics is given. As well as the beam path to the tokamak, a test path of the same optical length was built. Performance tests of the laser system carried out using the test path are described.

4.
Rev Sci Instrum ; 81(10): 10D531, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033886

ABSTRACT

A new Thomson scattering diagnostic system has been designed and is being built now on the COMPASS tokamak at the Institute of Plasma Physics ASCR in Prague (IPP Prague) in the Czech Republic. This contribution focuses on design, development, and installation of the light collection and detection system. High spatial resolution of 3 mm will be achieved by a combination of design of collection optics and connected polychromators. Imaging characteristics of both core and edge plasma collection objectives are described and fiber backplane design is presented. Several calibration procedures are discussed. The operational deployment of the Thomson scattering diagnostic is planned by the end of 2010.

5.
Rev Sci Instrum ; 81(10): 10D911, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033943

ABSTRACT

The COMPASS tokamak recently started operation at the Institute of Plasma Physics AS CR, v.v.i., Prague. A new 16-channel radiometer, operating alternatively in three frequency bands, has been designed and constructed. The system is prepared for detection of normal electron cyclotron emission (O1 or X2) or oblique electron Bernstein wave emission. The end-to-end calibration method includes all components that influence the antenna radiation pattern. A steady recalibration is possible using a noise generator connected to the radiometer input through a fast waveguide PIN-switch. Measurements of the antenna radiation characteristics (2D electric field) were performed in free space as well as in the tokamak chamber, showing the degradation effect of structures on the Gaussian beam shape. First plasma radiation temperature measurements from low-field circular plasmas are available.

SELECTION OF CITATIONS
SEARCH DETAIL
...