Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Front Plant Sci ; 13: 1066088, 2022.
Article in English | MEDLINE | ID: mdl-36865947

ABSTRACT

Seedlings of durum wheat and lentil were utilized to investigate the efficiency of magnetic water on growth and metabolic epicotyl profile. Tap water was passed through a magnetic device with a flow rate of max. 12900 - 13200 Gauss (G). Seeds and plantlets were grown on sand-free paper soaked by magnetized water, with unmagnetized tap water used in a control group. The growth parameters were collected at three time points (48, 96, and 144 hours after treatment), the same times at which metabolomic analysis was conducted on seeds, roots, and epicotyls. Although the effects varied with the species, tissues, and time point considered, compared with tap water (TW), the use of magnetized water treatment (MWT) led to higher root elongation in both genotypes. On the contrary, epicotyl length was not affected by treatment both in durum wheat and lentil. The results indicate that the use of magnetized water in agriculture can be considered a sustainable technology to promote plant development and quality with reduced and more efficient water usage, leading to cost-saving and environmental protection.

3.
BMC Plant Biol ; 21(1): 481, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686145

ABSTRACT

BACKGROUND: Opportunity and challenges of the agriculture scenario of the next decades will face increasing demand for secure food through approaches able to minimize the input to cultivations. Large panels of tomato varieties represent a valuable resource of traits of interest under sustainable cultivation systems and for genome-wide association studies (GWAS). For mapping loci controlling the variation of agronomic, fruit quality, and root architecture traits, we used a heterogeneous set of 244 traditional and improved tomato accessions grown under organic field trials. Here we report comprehensive phenotyping and GWAS using over 37,300 SNPs obtained through double digest restriction-site associated DNA (dd-RADseq). RESULTS: A wide range of phenotypic diversity was observed in the studied collection, with highly significant differences encountered for most traits. A variable level of heritability was observed with values up to 69% for morphological traits while, among agronomic ones, fruit weight showed values above 80%. Genotype by environment analysis highlighted the strongest genotypic effect for aboveground traits compared to root architecture, suggesting that the hypogeal part of tomato plants has been a minor objective for breeding activities. GWAS was performed by a compressed mixed linear model leading to 59 significantly associated loci, allowing the identification of novel genes related to flower and fruit characteristics. Most genomic associations fell into the region surrounding SUN, OVATE, and MYB gene families. Six flower and fruit traits were associated with a single member of the SUN family (SLSUN31) on chromosome 11, in a region involved in the increase of fruit weight, locules number, and fruit fasciation. Furthermore, additional candidate genes for soluble solids content, fruit colour and shape were found near previously reported chromosomal regions, indicating the presence of synergic and multiple linked genes underlying the variation of these traits. CONCLUSIONS: Results of this study give new hints on the genetic basis of traits in underexplored germplasm grown under organic conditions, providing a framework for the development of markers linked to candidate genes of interest to be used in genomics-assisted breeding in tomato, in particular under low-input and organic cultivation conditions.


Subject(s)
Chromosome Mapping , Crops, Agricultural/genetics , Fruit/genetics , Genome-Wide Association Study , Plant Breeding , Plant Roots/genetics , Solanum lycopersicum/genetics , Genetic Variation , Genome, Plant , Genotype , Italy , Organic Agriculture , Phenotype , Quantitative Trait Loci , Spain , United States
4.
Hortic Res ; 7: 134, 2020.
Article in English | MEDLINE | ID: mdl-32922806

ABSTRACT

Double digest restriction-site associated sequencing (ddRAD-seq) is a flexible and cost-effective strategy for providing in-depth insights into the genetic architecture of germplasm collections. Using this methodology, we investigated the genomic diversity of a panel of 288 diverse tomato (Solanum lycopersicum L.) accessions enriched in 'da serbo' (called 'de penjar' in Spain) long shelf life (LSL) materials (152 accessions) mostly originating from Italy and Spain. The rest of the materials originate from different countries and include landraces for fresh consumption, elite cultivars, heirlooms, and breeding lines. Apart from their LSL trait, 'da serbo' landraces are of remarkable interest for their resilience. We identified 32,799 high-quality SNPs, which were used for model ancestry population structure and non-parametric hierarchical clustering. Six genetic subgroups were revealed, clearly separating most 'da serbo' landraces, but also the Spanish germplasm, suggesting a subdivision of the population based on type and geographical provenance. Linkage disequilibrium (LD) in the collection decayed very rapidly within <5 kb. We then investigated SNPs showing contrasted minor frequency allele (MAF) in 'da serbo' materials, resulting in the identification of high frequencies in this germplasm of several mutations in genes related to stress tolerance and fruit maturation such as CTR1 and JAR1. Finally, a mini-core collection of 58 accessions encompassing most of the diversity was selected for further exploitation of key traits. Our findings suggest the presence of a genetic footprint of the 'da serbo' germplasm selected in the Mediterranean basin. Moreover, we provide novel insights on LSL 'da serbo' germplasm as a promising source of alleles for tolerance to stresses.

6.
Front Plant Sci ; 8: 362, 2017.
Article in English | MEDLINE | ID: mdl-28367157

ABSTRACT

Fusarium oxysporum f. sp. melonis Snyd. & Hans race 1.2 (FOM1.2) is the most virulent and yield-limiting pathogen of melon (Cucumis melo L.) worldwide. Current information suggest that the resistance to race 1.2 is controlled by multiple recessive genes and strongly affected by the environment. RNA-Seq analysis was used to identify candidate resistance genes and to dissect the early molecular processes deployed during melon-FOM1.2 interaction in the resistant doubled haploid line NAD and in the susceptible genotype Charentais-T (CHT) at 24 and 48 h post-inoculation (hpi). The transcriptome analysis of the NAD-FOM1.2 interaction identified 2,461 and 821 differentially expressed genes (DEGs) at 24 hpi and at 48 hpi, respectively, while in susceptible combination CHT-FOM1.2, 882 and 2,237 DEGs were recovered at 24 hpi and at 48 hpi, respectively. The overall expression profile suggests a prompt activation of the defense responses in NAD due to its basal defense-related machinery that allows an early pathogen recognition. Gene Ontology (GO) enrichment analyses revealed a total of 57 GO terms shared by both genotypes and consistent with response to fungal infection. GO classes named "chitinase activity," "cellulase activity," "defense response, incompatible interaction," "auxin polar transport" emerged as major factors of resistance to FOM1.2. The data indicated that NAD reacts to FOM1.2 with a fine regulation of Ca2+-mediated signaling pathways, cell wall reorganization, and hormone crosstalk (jasmonate and ethylene, auxin and abscissic acid). Several unannotated transcripts were recovered providing a basis for a further exploration of the melon resistance genes. DEGs belonging to the FOM1.2 genome were also detected in planta as a resource for the identification of potential pathogenicity factors. This work provides a broader view of the dynamic changes of the melon transcriptome triggered by FOM1.2 and highlights that the resistance response of NAD is mainly signaled by jasmonic acid and ethylene pathways mediated by ABA and auxin. The role of candidate plant and fungal responsive genes involved in the resistance is discussed.

7.
BMC Genomics ; 14: 540, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23937585

ABSTRACT

BACKGROUND: Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseases as bacterial, fungal wilts and root-knot nematodes. The little information on Solanum torvum (hereafter Torvum) resistance mechanisms, is mostly attributable to the lack of genomic tools (e.g. dedicated microarray) as well as to the paucity of database information limiting high-throughput expression studies in Torvum. RESULTS: As a first step towards transcriptome profiling of Torvum inoculated with the nematode M. incognita, we built a Torvum 3' transcript catalogue. One-quarter of a 454 full run resulted in 205,591 quality-filtered reads. De novo assembly yielded 24,922 contigs and 11,875 singletons. Similarity searches of the S. torvum transcript tags catalogue produced 12,344 annotations. A 30,0000 features custom combimatrix chip was then designed and microarray hybridizations were conducted for both control and 14 dpi (day post inoculation) with Meloidogyne incognita-infected roots samples resulting in 390 differentially expressed genes (DEG). We also tested the chip with samples from the phylogenetically-related nematode-susceptible eggplant species Solanum melongena. An in-silico validation strategy was developed based on assessment of sequence similarity among Torvum probes and eggplant expressed sequences available in public repositories. GO term enrichment analyses with the 390 Torvum DEG revealed enhancement of several processes as chitin catabolism and sesquiterpenoids biosynthesis, while no GO term enrichment was found with eggplant DEG.The genes identified from S. torvum catalogue, bearing high similarity to known nematode resistance genes, were further investigated in view of their potential role in the nematode resistance mechanism. CONCLUSIONS: By combining 454 pyrosequencing and microarray technology we were able to conduct a cost-effective global transcriptome profiling in a non-model species. In addition, the development of an in silico validation strategy allowed to further extend the use of the custom chip to a related species and to assess by comparison the expression of selected genes without major concerns of artifacts. The expression profiling of S. torvum responses to nematode infection points to sesquiterpenoids and chitinases as major effectors of nematode resistance. The availability of the long sequence tags in S. torvum catalogue will allow precise identification of active nematocide/nematostatic compounds and associated enzymes posing the basis for exploitation of these resistance mechanisms in other species.


Subject(s)
Gene Expression Profiling , Host-Parasite Interactions/genetics , Solanum/genetics , Solanum/parasitology , Tylenchoidea/physiology , Animals , Chitinases/genetics , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Sequence Analysis, RNA , Sesquiterpenes/metabolism , Solanum/enzymology , Solanum/physiology , Species Specificity
8.
BMC Genomics ; 12: 122, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21338485

ABSTRACT

BACKGROUND: Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression are poorly understood. Resistance to races 1 and 2 is controlled by a single dominant gene, whereas only partial polygenic resistance to race 1,2 has been described. We carried out a large-scale cDNA-AFLP analysis to identify host genes potentially related to resistance and susceptibility as well as fungal genes associated with the infection process. At the same time, a systematic reisolation procedure on infected stems allowed us to monitor fungal colonization in compatible and incompatible host-pathogen combinations. RESULTS: Melon plants (cv. Charentais Fom-2), which are susceptible to race 1,2 and resistant to race 1, were artificially infected with a race 1 strain of FOM or one of two race 1,2 w strains. Host colonization of stems was assessed at 1, 2, 4, 8, 14, 16, 18 and 21 days post inoculation (dpi), and the fungus was reisolated from infected plants. Markedly different colonization patterns were observed in compatible and incompatible host-pathogen combinations. Five time points from the symptomless early stage (2 dpi) to obvious wilting symptoms (21 dpi) were considered for cDNA-AFLP analysis. After successful sequencing of 627 transcript-derived fragments (TDFs) differentially expressed in infected plants, homology searching retrieved 305 melon transcripts, 195 FOM transcripts expressed in planta and 127 orphan TDFs. RNA samples from FOM colonies of the three strains grown in vitro were also included in the analysis to facilitate the detection of in planta-specific transcripts and to identify TDFs differentially expressed among races/strains. CONCLUSION: Our data suggest that resistance against FOM in melon involves only limited transcriptional changes, and that wilting symptoms could derive, at least partially, from an active plant response.We discuss the pathogen-derived transcripts expressed in planta during the infection process and potentially related to virulence functions, as well as transcripts that are differentially expressed between the two FOM races grown in vitro. These transcripts provide candidate sequences that can be further tested for their ability to distinguish between races.Sequence data from this article have been deposited in GenBank, Accession Numbers: HO867279-HO867981.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Cucumis melo/genetics , Fusarium/pathogenicity , Plant Diseases/genetics , Cluster Analysis , Cucumis melo/immunology , Cucumis melo/microbiology , DNA, Complementary/genetics , Fusarium/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genotype , Host-Pathogen Interactions , Immunity, Innate , Molecular Sequence Data , Plant Diseases/microbiology , RNA, Fungal/genetics , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...