Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(23): 15715-15728, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37265107

ABSTRACT

In a ternary mixture with the Soret effect, the interplay between cross-diffusion, thermodiffusion, and convection can lead to rich and complex dynamics including spatial patterns and oscillations. We present an experimental and three-dimensional numerical study of dynamic regimes in the toluene-methanol-cyclohexane ternary mixture with the Soret effect in the geometry of a thermogravitational column. An important feature of the system is that for the first component, toluene, the Soret and thermodiffusion coefficients have opposite signs, which triggers the oscillatory instability. Our experiments and numerical analysis show that the primary long-wave instability manifests itself in the form of a standing wave, and the secondary one emerges in the form of a swinging pattern. The computational model provides insight into the role of cross-diffusion coefficient D12 in the emergence and development of oscillatory instability. This study demonstrates that the long-wave oscillatory instability in transverse direction occurs only within a limited range of the D12 values and outside of this range it decays to a stationary pattern of either Turing-like or monotonic instability.

2.
Eur Phys J E Soft Matter ; 42(5): 58, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31089829

ABSTRACT

In the present work, by using a parallelepipedic thermogravitational microcolumn, the temperature gradient influence on the stability of the flow has been examined, emphasizing mixtures with positive Soret coefficients. Experiments were conducted for DCMIX2 Toluene/Methanol and DCMIX3 Water/Ethanol binary subsystems because of their broad range of positive Soret values for high concentrations of methanol and ethanol, respectively. Two different mixtures have been studied here in order to confirm the thermogravitational stability of the mixtures. Experiments were compared with numerical simulations carried out using the open-source software platform OpenFOAM.

SELECTION OF CITATIONS
SEARCH DETAIL
...