Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Arthroplasty ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38889807

ABSTRACT

BACKGROUND: Periprosthetic joint infection remains a major problem. The bactericidal efficacy of commercial irrigation solutions for the treatment of infection is not well established in the presence of porous titanium (Ti) implants. This study compared the in vitro efficacy of five irrigation solutions on infected three-dimensional-printed porous Ti discs. METHODS: Titanium discs (2 × 4 mm, 400, 700, and 1,000 µm) were infected with S. aureus (1 × 106 colony-forming unit/mL) and incubated for 3 hours or 3 days to create acute or chronic infection with biofilm. Discs were irrigated with saline, antibiotic, or antiseptic solutions, then repeatedly sonicated. Sonicates were cultured for bacterial quantification. Statistical analyses were performed using one-way analysis of variance (ANOVA), followed by Tukey-Kramer post hoc testing (P < .05 significance). Biofilms were visualized by scanning electron microscopy. RESULTS: Saline irrigation was ineffective in both groups. In acute infections with 400 µm pores, differences were found with saline versus solution #3 (P = .015) and #4 (P = .015). Solution #4 had the lowest bacterial counts for all pore sizes. For biofilm, irrigation with saline, solutions #1, #2, and #3 inadequately cleared bacteria in all pore sizes. Lower remaining concentrations were observed in #4 with 400µm pores compared to saline (P = .06) and #2 (P = .039). The scanning electron microscopy showed a reduction of biofilm in samples washed with #4. CONCLUSIONS: Irrigation of infected porous Ti discs with saline, solutions #1 and #2 failed to reduce the bacterial load. The 400 µm discs consistently had more bacteria despite irrigation, highlighting the difficulty of removing bacteria from small pores. Solutions #3 and #4 reduced bacteria acutely, but only #4 demonstrated efficacy in clearing biofilm compared to saline. These results should be considered when treating periprosthetic joint infection in the presence of porous components and the potential presence of biofilm.

2.
Connect Tissue Res ; 60(3): 254-264, 2019 05.
Article in English | MEDLINE | ID: mdl-29929403

ABSTRACT

PURPOSE: The rat rotator cuff (RC) model is used to study RC pathology and potential treatment; however, native scar-mediated healing allows the rat RC to recover at 4-6 weeks but little is known about acute healing. This study characterized the properties of the repaired and non-repaired rat RC following surgical detachment. MATERIALS AND METHODS: Forty-eight rats underwent surgical RC detachment and received surgical repair (Repair) or left unrepaired (Defect) to either 12 or 19 days. Healthy controls were obtained from contralateral limbs. Biomechanical properties were assessed using stress relaxation and failure testing and mechanical modeling performed using quasilinear viscoelastic (QLV) and structurally based elastic models. Histology and micro-magnetic resonance imaging were used to qualitatively grade tendon-to-bone healing. RESULTS: Repair and Defect exhibited significantly inferior mechanical properties compared to Healthy at both time points. Repair had significant increases in peak, equilibrium, and ultimate stress, modulus, and stiffness and significant decreases in cross-sectional area, % relaxation, and QLV constant "C" between 12 and 19 days, whereas Defect showed no change. CONCLUSIONS: This study demonstrates acute differences in mechanical properties of the rat supraspinatus tendon in the presence and absence of surgical repair. Understanding the longitudinal recovery of mechanical properties can facilitate more accurate characterization of RC pathology or future treatments.


Subject(s)
Rotator Cuff/pathology , Rotator Cuff/physiopathology , Wound Healing , Animals , Biomechanical Phenomena , Elastic Modulus , Elasticity , Female , Magnetic Resonance Imaging , Models, Biological , Postoperative Period , Rats, Sprague-Dawley , Rotator Cuff/diagnostic imaging , Stress, Mechanical , Viscosity
3.
J Biomed Mater Res B Appl Biomater ; 106(7): 2693-2699, 2018 10.
Article in English | MEDLINE | ID: mdl-29480542

ABSTRACT

Adverse events have been reported with acrylic bone cements. However, current test standards for acrylic materials fail to characterize the potentially harmful monomers released during the curing stage. In clinical applications, materials are implanted into the human body during this phase. Silicone may be a safer alternative to acrylic cements. Silicone is used in medical applications for its biocompatibility and stability characteristics. Previously, no study has been completed which compares silicone to acrylic cements. In this study, both materials were injected into the cell medium during the curing process which more accurately reflects clinical use of material. Initially, cell cultures followed ASTM standard F813-07 which fails to capture the effects of monomer released during curing. Subsequently, a modified cell culture method was employed which evaluated cytotoxicity while the materials cured. The objective of this study was to capture toxicity data during curing phase. Thus, the test method employed measured and excluded the impact of the exothermic reaction temperature of polymethyl methacrylate (PMMA) on cell growth. The concentration of PMMA monomer was measured at 1 and 24 h after injecting PMMA into culture plates in a manner consistent with established cell growth methodologies. Our results indicate current in vitro cytotoxicity assays recommended by ASTM standards are unable to reveal the real cytotoxic effect caused by methyl methacrylate monomers during polymerization. Our modified experiment can more accurately illustrate the true nature of the toxicity of materials and improve assay results. In these tests, silicone based elastomeric polymers showed excellent cytocompatibility. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2693-2699, 2018.


Subject(s)
Bone Cements , Materials Testing , Polymerization , Polymethyl Methacrylate , Silicone Elastomers , Animals , Bone Cements/chemistry , Bone Cements/pharmacology , Cell Line , Mice , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/pharmacology , Silicone Elastomers/chemistry , Silicone Elastomers/pharmacology
5.
Biomed Mater ; 12(4): 045008, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28357996

ABSTRACT

Few studies have been reported that focus on developing implant surface nanofiber (NF) coating to prevent infection and enhance osseointegration by local drug release. In this study, coaxial doxycycline (Doxy)-doped polycaprolactone/polyvinyl alcohol (PCL/PVA) NFs were directly deposited on a titanium (Ti) implant surface during electrospinning. The interaction of loaded Doxy with both PVA and PCL NFs was characterized by Raman spectroscopy. The bonding strength of Doxy-doped NF coating on Ti implants was confirmed by a stand single-pass scratch test. The improved implant osseointegration by PCL/PVA NF coatings in vivo was confirmed by scanning electron microscopy, histomorphometry and micro computed tomography (µCT) at 2, 4 and 8 weeks after implantation. The bone contact surface (%) changes of the NF coating group (80%) is significantly higher than that of the no NF group (<5%, p < 0.05). Finally, we demonstrated that a Doxy-doped NF coating effectively inhibited bacterial infection and enhanced osseointegration in an infected (Staphylococcus aureus) tibia implantation rat model. Doxy released from NF coating inhibited bacterial growth up to 8 weeks in vivo. The maximal push-in force of the Doxy-NF coating (38 N) is much higher than that of the NF coating group (6.5 N) 8 weeks after implantation (p < 0.05), which was further confirmed by quantitative histological analysis and µCT. These findings indicate that coaxial PCL/PVA NF coating doped with Doxy and/or other drugs have great potential in enhancing implant osseointegration and preventing infection.


Subject(s)
Doxycycline/pharmacology , Osseointegration/drug effects , Polyesters/chemistry , Polyvinyl Alcohol/chemistry , Staphylococcal Infections/prevention & control , Staphylococcus aureus/chemistry , Staphylococcus aureus/drug effects , Tibia/physiology , Titanium/chemistry , Animals , Doxycycline/chemistry , Nanofibers , Prostheses and Implants , Rats , X-Ray Microtomography
6.
ACS Biomater Sci Eng ; 3(6): 1146-1153, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-33429589

ABSTRACT

The electrospinning process produces dense two-dimensional (2D) nanofiber (NF) sheets with small pore size that limits cell infiltration and proliferation. This study aims to fabricate three-dimensional (3D) NF sheets by designing a NF collector mounted with multiple movable needles. The corona discharge effect leads to continuous deposition of 3D polycaprolactone (PCL) NF matrices on the surface of the NF collector. The increase of the pore size, pore volume, and pore interconnectivity of the formed 3D NF sheet was confirmed by scanning electron microscopy, 3D confocal laser scanning microscopy, and micro-computerized tomography, respectively. An increased crystallinity of 3D NFs was observed by thermal and rheological analysis. Furthermore, cell growth on the 3D NF matrices was evaluated using murine pre-osteoblastic MC3T3 cells. When compared with 2D NF matrices, 3D NF matrices demonstrated enhanced cell infiltration, proliferation, and differentiation. We believe that a corona discharge-based NF collector design represents a promising approach to fabricate 3D NF matrices with desirable geometry, and microstructure. This simple, controllable, one-step process may help move forward the clinical translation of electrospun NFs in regenerative medicine.

7.
J Biomech ; 49(16): 4159-4163, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27863739

ABSTRACT

Rotator cuff tears are a common shoulder pathology. The rat supraspinatus tendon model is commonly employed for preclinical assessment of rotator cuff pathology or regeneration. However, there is a lack of a standardized biomechanical testing protocol; previous studies have tested the tendon at abduction angles ranging from -15° to 90°. This study aimed to assess the effect of abduction/testing angle on the biomechanical properties of the rat supraspinatus tendon. Fourty-eight shoulders (n=12/group) from healthy Sprague-Dawley rats were randomized to 4 testing angle groups: 0° (corresponding to 90° abduction), 30°, 60°, and 90° (0° abduction). Biomechanical testing of the supraspinatus was performed, consisting of stress-relaxation and load-to-failure. Mechanical properties were calculated, and nonlinear tensile modeling was performed via the Quasilinear Viscoelastic (QLV) and Structurally Based Elastic (SBE) models. Results indicate that testing angle significantly affects supraspinatus tendon biomechanics. Stiffness and modulus significantly decreased with increasing testing angle (stiffness: 20.93±5.8N/mm at 0° vs. 6.12±1.0N/mm at 90°, P<.001; modulus: 59.51±34.0MPa at 0° vs. 22.37±7.4MPa at 90°, P=.002). Testing angle correlated significantly to ultimate strain, yield strain, and all coefficients of the SBE and QLV models, implying differences in collagen fiber crimp patterns and viscoelastic behavior as a function of testing angle. These results suggest that differences in testing methodology, in particular testing angle, significantly affect the measured mechanical properties of the supraspinatus tendon. Future studies may consider utilizing testing angles of 0°-30°, at which tendon stiffness is maximized, and full standardization of rat rotator cuff testing protocols is necessary.


Subject(s)
Rotator Cuff/physiopathology , Animals , Biomechanical Phenomena , Elasticity , Female , Humans , Range of Motion, Articular , Rats , Rats, Sprague-Dawley , Rotator Cuff Injuries/physiopathology , Shoulder Joint/physiopathology
8.
J Orthop Res ; 33(8): 1158-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25877256

ABSTRACT

The long head of the biceps tendon (LHBT) occupies a unique proximal intra-articular and distal extra-articular position within the human shoulder. In the presence of a rotator cuff (RC) tear, the LHBT is recruited into an accelerated role undergoing potential mechanical and biochemical degeneration. Intra-articular sections of the LHBT were harvested during primary shoulder arthroplasty from patients with an intact or deficient RC. LHBTs were stained (H&E, Alcian Blue) and subjected to histologic analysis using the semiquantitative Bonar scale and measurement of collagen orientation. LHBTs (n = 12 per group) were also subjected to gene-expression analyses via an RT(2) -PCR Profiler Array quantifying 84 genes associated with cell-cell and cell-matrix interactions. LHBTs (n = 18 per group) were biomechanically tested with both stress-relaxation and load-to-failure protocols and subsequently modeled with the Quasilinear Viscoelastic (QLV) and Structural-Based Elastic (SBE) models. While no histologic differences were observed, significant differences in mechanical testing, and viscoelastic modeling parameters were found. PCR arrays identified five genes that were differentially expressed between RC-intact and RC-deficient LHBT groups. LHBTs display signs of pathology regardless of RC status in the arthroplasty population, which may be secondary to both glenohumeral joint arthritis and the additional mechanical role of the LHBT in this population.


Subject(s)
Arthroplasty , Rotator Cuff/pathology , Shoulder/surgery , Tendons/physiology , Transcriptome , Aged , Biomechanical Phenomena , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...