Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 80(1): 53, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36583787

ABSTRACT

The evolution and the development of the symptoms of Coronavirus disease 19 (COVID-19) are due to different factors, where the microbiome plays a relevant role. The possible relationships between the gut, lung, nasopharyngeal, and oral microbiome with COVID-19 have been investigated. We analyzed the nasal microbiome of both positive and negative SARS-CoV-2 individuals, showing differences in terms of bacterial composition in this niche of respiratory tract. The microbiota solution A (Arrow Diagnostics) was used to cover the hypervariable V1-V3 regions of the bacterial 16S rRNA gene. MicrobAT Suite and MicrobiomeAnalyst program were used to identify the operational taxonomic units (OTUs) and to perform the statistical analysis, respectively. The main taxa identified in nasal microbiome of COVID-19 patients and in Healthy Control subjects belonged to three distinct phyla: Proteobacteria (HC = 14%, Cov19 = 35.8%), Firmicutes (HC = 28.8%, Cov19 = 30.6%), and Actinobacteria (HC = 56.7%, Cov19 = 14.4%) with a relative abundance > 1% in all groups. A significant reduction of Actinobacteria in Cov19 group compared to controls (P < 0.001, FDR = 0.01) was found. The significant reduction of Actinobacteria was identified in all taxonomic levels down to the genus (P < 0.01) using the ANOVA test. Indeed, a significantly reduced relative abundance of Corynebacterium was found in the patients compared to healthy controls (P = 0.001). Reduced abundance of Corynebacterium has been widely associated with anosmia, a common symptom of COVID-19 as suffered from our patients. Contrastingly, the Corynebacterium genus was highly represented in the nasal mucosa of healthy subjects. Further investigations on larger cohorts are necessary to establish functional relationships between nasal microbiota content and clinical features of COVID-19.


Subject(s)
Actinobacteria , COVID-19 , Microbiota , Humans , Anosmia , RNA, Ribosomal, 16S/genetics , SARS-CoV-2/genetics , Bacteria/genetics , Corynebacterium/genetics , Actinobacteria/genetics
2.
Int J Mol Sci ; 22(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34639088

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignancies in the Western world and intestinal dysbiosis might contribute to its pathogenesis. The mucosal colon microbiome and C-C motif chemokine 2 (CCL2) were investigated in 20 healthy controls (HC) and 20 CRC patients using 16S rRNA sequencing and immunoluminescent assay, respectively. A total of 10 HC subjects were classified as overweight/obese (OW/OB_HC) and 10 subjects were normal weight (NW_HC); 15 CRC patients were classified as OW/OB_CRC and 5 patients were NW_CRC. Results: Fusobacterium nucleatum and Escherichia coli were more abundant in OW/OB_HC than in NW_HC microbiomes. Globally, Streptococcus intermedius, Gemella haemolysans, Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli were significantly increased in CRC patient tumor/lesioned tissue (CRC_LT) and CRC patient unlesioned tissue (CRC_ULT) microbiomes compared to HC microbiomes. CCL2 circulating levels were associated with tumor presence and with the abundance of Fusobacterium nucleatum, Bacteroides fragilis and Gemella haemolysans. Our data suggest that mucosal colon dysbiosis might contribute to CRC pathogenesis by inducing inflammation. Notably, Fusobacterium nucleatum, which was more abundant in the OW/OB_HC than in the NW_HC microbiomes, might represent a putative link between obesity and increased CRC risk.


Subject(s)
Bacteria/genetics , Biomarkers/analysis , Chemokine CCL2/blood , Colorectal Neoplasms/diagnosis , Gastrointestinal Microbiome , Intestinal Mucosa/pathology , RNA, Ribosomal, 16S/genetics , Aged , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Case-Control Studies , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Female , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Middle Aged , RNA, Ribosomal, 16S/analysis
3.
Front Oncol ; 11: 705948, 2021.
Article in English | MEDLINE | ID: mdl-34354952

ABSTRACT

BACKGROUND: We report the case of a woman with non-Hodgkin lymphoma who remained positive on the molecular assay for SARS-CoV-2 for six months: she has never experienced a severe form of COVID-19 although in absence of seroconversion. METHODS: The whole SARS-CoV-2 genome analysis was performed by the CleanPlex SARS-CoV-2 Research and Surveillance NGS Panel (PARAGON GENOMICS, Hayward, USA). RESULTS: We found twenty-two mutations in SARS-CoV-2 genome and a novel deleterious ORF3a frameshift c.766_769del corresponding to a unique and novel lineage. The region affected by this frameshift variant is reported as being important in determining SARS-CoV-2 immunogenicity. Patient's immunophenotype showed the absence of B lymphocytes and significantly reduced T-cell count. Only after the treatment with hyperimmune plasma she finally became negative on the swab. CONCLUSIONS: Our findings could be helpful in the management of patients with immunodeficiency, particularly when novel variants, potentially altering the virus immune response, are present.

4.
Front Oncol ; 11: 602523, 2021.
Article in English | MEDLINE | ID: mdl-33718150

ABSTRACT

The partner and localizer of BRCA2 (PALB2) is a major BRCA2 binding partner that participates in homologous recombination repair in response to DNA double-strand breaks. Germline alterations of the PALB2 gene have recently been associated with a high risk of developing breast cancer. We investigated a 37-year-old Caucasian woman with breast cancer and family history of breast cancer using targeted next generation sequencing. A novel heterozygous deletion involving exons 5 and 6 was found in the PALB2 gene, and resulted in the production of a truncated PALB2 protein. These findings expand the mutational spectra of PALB2-associated breast cancer, and may improve the mutation-based screening and genetic diagnosis of breast cancer.

5.
Front Cell Infect Microbiol ; 11: 625581, 2021.
Article in English | MEDLINE | ID: mdl-33659220

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the pandemic Coronavirus Disease 2019 (COVID-19). This virus is highly transmissible among individuals through both droplets and aerosol leading to determine severe pneumonia. Among the various factors that can influence both the onset of disease and the severity of its complications, the microbiome composition has also been investigated. Recent evidence showed the possible relationship between gut, lung, nasopharyngeal, or oral microbiome and COVID-19, but very little is known about it. Therefore, we aimed to verify the relationships between nasopharyngeal microbiome and the development of either COVID-19 or the severity of symptoms. To this purpose, we analyzed, by next generation sequencing, the hypervariable V1-V2-V3 regions of the bacterial 16S rRNA in nasopharyngeal swabs from SARS-CoV-2 infected patients (n=18) and control (CO) individuals (n=12) using Microbiota solution A (Arrow Diagnostics). We found a significant lower abundance of Proteobacteria and Fusobacteria in COVID-19 patients in respect to CO (p=0.003 and p<0.0001, respectively) from the phylum up to the genus (p<0.001). The Fusobacterium periodonticum (FP) resulted as the most significantly reduced species in COVID-19 patients respect to CO. FP is reported as being able to perform the surface sialylation. Noteworthy, some sialic acids residues on the cell surface could work as additional S protein of SARS-CoV-2 receptors. Consequently, SARS-CoV-2 could use sialic acids as receptors to bind to the epithelium of the respiratory tract, promoting its clustering and the disease development. We can therefore speculate that the significant reduction of FP in COVID-19 patients could be directly or indirectly linked to the modulation of sialic acid metabolism. Finally, viral or environmental factors capable of interfering with sialic metabolism could determine a fall in the individual protection from SARS-CoV-2. Further studies are necessary to clarify the precise role of FP in COVID-19.


Subject(s)
COVID-19/epidemiology , Fusobacterium Infections/microbiology , Fusobacterium/growth & development , Microbiota , N-Acetylneuraminic Acid/metabolism , Pandemics , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , COVID-19/virology , Female , Fusobacterium/genetics , Humans , Male , Middle Aged , Mouth/microbiology , Nasopharynx/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...