Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(10): 2160-2175.e17, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37137306

ABSTRACT

The serotonin transporter (SERT) removes synaptic serotonin and is the target of anti-depressant drugs. SERT adopts three conformations: outward-open, occluded, and inward-open. All known inhibitors target the outward-open state except ibogaine, which has unusual anti-depressant and substance-withdrawal effects, and stabilizes the inward-open conformation. Unfortunately, ibogaine's promiscuity and cardiotoxicity limit the understanding of inward-open state ligands. We docked over 200 million small molecules against the inward-open state of the SERT. Thirty-six top-ranking compounds were synthesized, and thirteen inhibited; further structure-based optimization led to the selection of two potent (low nanomolar) inhibitors. These stabilized an outward-closed state of the SERT with little activity against common off-targets. A cryo-EM structure of one of these bound to the SERT confirmed the predicted geometry. In mouse behavioral assays, both compounds had anxiolytic- and anti-depressant-like activity, with potencies up to 200-fold better than fluoxetine (Prozac), and one substantially reversed morphine withdrawal effects.


Subject(s)
Ibogaine , Selective Serotonin Reuptake Inhibitors , Serotonin Plasma Membrane Transport Proteins , Small Molecule Libraries , Animals , Mice , Fluoxetine/pharmacology , Ibogaine/chemistry , Ibogaine/pharmacology , Molecular Conformation , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/ultrastructure , Selective Serotonin Reuptake Inhibitors/pharmacology , Small Molecule Libraries/pharmacology
2.
Cell Signal ; 97: 110396, 2022 09.
Article in English | MEDLINE | ID: mdl-35787445

ABSTRACT

Nine mammalian adenylyl cyclases (AC) are pseudoheterodimers with two hexahelical membrane domains, which are isoform-specifically conserved. Previously we proposed that these membrane domains are orphan receptors (https://doi.org/10.7554/eLife.13098; https://doi.org/10.1016/j.cellsig.2020.109538). Lipids extracted from fetal bovine serum at pH 1 inhibited several mAC activities. Guided by a lipidomic analysis we tested glycerophospholipids as potential ligands. Contrary to expectations we surprisingly discovered that 1-stearoyl-2-docosahexaenoyl-phosphatidic acid (SDPA) potentiated Gsα-activated activity of human AC isoform 3 seven-fold. The specificity of fatty acyl esters at glycerol positions 1 and 2 was rather stringent. 1-Stearoyl-2-docosahexaenoyl-phosphatidylserine and 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine significantly potentiated several Gsα-activated mAC isoforms to different extents. SDPA appears not interact with forskolin activation of AC isoform 3. SDPA enhanced Gsα-activated AC activities in membranes from mouse brain cortex. The action of SDPA was reversible. Unexpectedly, SDPA did not affect cAMP generation in HEK293 cells stimulated by isoproterenol, PGE2 and adenosine, virtually excluding a role as an extracellular ligand and, instead, suggesting an intracellular role. In summary, we discovered a new dimension of intracellular AC regulation by chemically defined glycerophospholipids.


Subject(s)
Adenylyl Cyclases , GTP-Binding Protein alpha Subunits, Gs , Adenylyl Cyclases/metabolism , Animals , Colforsin/pharmacology , GTP-Binding Protein alpha Subunits, Gs/metabolism , Glycerophospholipids , HEK293 Cells , Humans , Mammals/metabolism , Mice
3.
Cell Signal ; 68: 109538, 2020 04.
Article in English | MEDLINE | ID: mdl-31931092

ABSTRACT

Mammalian adenylate cyclases (ACs) are pseudoheterodimers with dissimilar hexahelical membrane-anchors, isoform-specifically conserved for more than half a billion years. We exchanged both membrane anchors of the AC isoform 2 by the quorum-sensing receptor from Vibrio harveyi, CqsS, which has a ligand, Cholera-Autoinducer-1 (CAI-1). In the chimera, AC activity was stimulated by Gsα, CAI-1 had no effect. Surprisingly, CAI-1 inhibited Gsα stimulation. We report that Gsα stimulation of human AC isoforms 2, 3, 5, and 9 expressed in Sf9 cells is inhibited by serum as is AC activity in membranes isolated from rat brain cortex. AC2 activation by forskolin or forskolin/Gsα was similarly inhibited. Obviously, serum contains as yet unidentified factors affecting AC activity. The data establish a linkage in ACs, in which the membrane anchors, as receptors, transduce extracellular signals to the cytosolic catalytic dimer. A mechanistic three state model of AC regulation is presented compatible with all known regulatory inputs into mammalian ACs. The data allow designating the membrane anchors of mammalian ACs as orphan receptors, and establish a new level of AC regulation.


Subject(s)
Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , Cell Membrane/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Mammals/metabolism , Animals , Bacterial Proteins/metabolism , Colforsin/pharmacology , Humans , Ligands , Male , Protein Structure, Secondary , Serum , Vibrio/metabolism
4.
Int J Med Microbiol ; 309(3-4): 245-251, 2019.
Article in English | MEDLINE | ID: mdl-30954381

ABSTRACT

Nine pseudoheterodimeric mammalian adenylate cyclases possess two dissimilar hexahelical membrane domains (TM1 and TM2), two dissimilar cyclase-transducing-elements (CTEs) and two complementary catalytic domains forming a catalytic dimer (often termed cyclase-homology-domain, CHD). Canonically, these cyclases are regulated by G-proteins which are released upon ligand activation of G-protein-coupled receptors. So far, a biochemical function of the membrane domains beyond anchoring has not been established. For almost 30 years, work in our laboratory was based on the hypothesis that these voluminous membrane domains possess an additional physiological, possibly regulatory function. Over the years, we have generated numerous artificial fusion proteins between the catalytic domains of various bacterial adenylate cyclases which are active as homodimers and the membrane receptor domains of known bacterial signaling proteins such as chemotaxis receptors and quorum-sensors which have known ligands. Here we summarize the current status of our experimental efforts. Taken together, the data allow the conclusion that the hexahelical mammalian membrane anchors as well as similar membrane anchors from bacterial adenylate cyclase congeners are orphan receptors. A search for as yet unknown ligands of membrane-delimited adenylate cyclases is now warranted.


Subject(s)
Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Adenylyl Cyclases/genetics , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Chemotaxis , Humans , Ligands , Quorum Sensing , Receptors, Cell Surface/genetics , Signal Transduction
5.
Parasitol Res ; 111(1): 173-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22231268

ABSTRACT

The extracts from the peels of Citrus limetta were prepared using hexane and petroleum ether as the solvents. The larvicidal potential of each extract was assessed against dengue fever vector, Aedes aegypti, and malarial vector, Anopheles stephensi, by evaluating the toxicity effects on early fourth instars. Both the extracts were found effective against both the species. The bioassay with hexane extracts resulted in LC(50) values of 132.45 and 96.15 ppm against A. stephensi and A. aegypti, respectively; while the petroleum ether extracts from the C. limetta peels showed LC(50) values of 244.59 and 145.50 ppm, respectively. It revealed that the hexane extracts possessed 1.9-fold more larvicidal potential against A. stephensi and 1.5-fold more efficacy against A. aegypti as compared to the extracts obtained using petroleum ether as solvent. The data further revealed that the extracts were 1.4-1.7 times more effective against A. aegypti as compared to A. stephensi. The qualitative phytochemical study of the extracts showed the presence of terpenoids and flavonoids as the common phytochemical constituents in the extracts suggesting their possible role in the toxicity. Other constituents tested were not detected except alkaloids which were found to be present only in the petroleum ether extract. Further studies are needed to isolate and identify the active principles involved, their mode of action, formulated preparations for enhancing potency and stability, toxicity, and effects on non-target organisms and the environment. This could help in formulating efficient strategies for mosquito control.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , Citrus/chemistry , Insecticides/pharmacology , Plant Extracts/pharmacology , Alkaloids/analysis , Animals , Female , Flavonoids/analysis , Fruit/chemistry , India , Insecticides/chemistry , Insecticides/isolation & purification , Larva/drug effects , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Survival Analysis , Terpenes/analysis
6.
Parasitol Res ; 108(4): 853-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20978787

ABSTRACT

Different extracts of 1,000 ppm were prepared from the leaves of Parthenium hysterophorus using acetone, benzene, petroleum ether, diethyl ether and hexane as the solvents. The efficacy of each extract was assessed against dengue fever vector, Aedes aegypti by evaluating the variations in fecundity, fertility and behavioural response of the female adults. The leaf extracts could cause 70-100% repellency in the oviposition behaviour of the adults. The diethyl ether extract was found to be the most effective extract resulting in maximum effective repellency (99.7%) leading to the highest levels of reduced fecundity and 100% egg mortality followed by benzene extracts causing 93.8% reduced oviposition and 100% ovicidal effect. Hexane and acetone extracts with the least oviposition deterrence of 70-74% and negligible egg mortality (8-9%) proved to be the least effective extracts. The petroleum ether extract had a moderate impact resulting in 93.2% diminished fecundity and 41% ovicidal effect. The behavioural response of female adults of A. aegypti was evaluated by performing spatial repellency and contact irritancy assays. The most significant spatial repellency behaviour was elicited by acetone extracts leading to escape of 80% mosquitoes. Hexane and diethyl ether extracts could cause moderate response with 50-60% escape, while a slight and no reaction was observed on exposure to petroleum ether and benzene extracts, respectively. An interesting observation was the knocked-down activity caused by the hexane extracts with no recovery even after 24 h. A significant contact irritancy response was noticed in the mosquitoes on exposure to acetone leaf extracts resulting in first flight only after 4 s and a total of 12 flights during exposure. No irritancy behaviour was observed on exposure to diethyl ether and benzene leaf extracts. However, as against controls, a slight irritability response was noticed on exposure to hexane leaf extracts resulting in relative irritability of 1.2. Our results suggest the selective efficiency of Parthenium leaf extracts against A. aegypti, as the most effective oviposition deterrent and ovicidal agent was least effective as irritant extract and vice-versa. Further detailed research is needed to identify the active ingredient in the extracts and implement the effective mosquito management programme.


Subject(s)
Aedes/drug effects , Asteraceae/chemistry , Insect Repellents/pharmacology , Plant Extracts/pharmacology , Aedes/physiology , Animals , Female , Fertility/drug effects , Insect Repellents/isolation & purification , Oviposition/drug effects , Plant Extracts/isolation & purification , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...