Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(29): E5778-E5786, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28673973

ABSTRACT

Atmospheric methane (CH4) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [δ13CH4 and δD(CH4)] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our δD(CH4) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.

2.
Rapid Commun Mass Spectrom ; 23(2): 313-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19089856

ABSTRACT

The stable oxygen isotope signature (delta(18)O) of soil is expected to be the result of a mixture of components within the soil with varying delta(18)O signatures. Thus, the delta(18)O of soils should provide information about the soil's substrate, especially about the relative contribution of organic matter versus minerals. As there is no standard method available for measuring soil delta(18)O, the method for the measurement of single components using a high-temperature conversion elemental analyser (TC/EA) was adapted. We measured delta(18)O in standard materials (IAEA 601, IAEA 602, Merck cellulose) and soils (organic and mineral soils) in order to determine a suitable pyrolysis temperature for soil analysis. We consider a pyrolysis temperature suitable when the yield of signal intensity (intensity of mass 28 per 100 microg) is at a maximum and the acquired raw delta(18)O signature is constant for the standard materials used and when the quartz signal from the soil is still negligible. After testing several substances within the temperature range of 1075 to 1375 degrees C we decided to use a pyrolysis temperature of 1325 degrees C for further measurements. For the Urseren Valley we have found a sequence of increasing delta(18)O signatures from phyllosilicates to upland soils, wetland soils and vegetation. Our measurements show that the delta(18)O values of upland soil samples differ significantly from wetland soil samples. The latter can be related to the changing mixing ratio of the mineral and organic constituents of the soil. For wetlands affected by soil erosion, we have found intermediate delta(18)O signatures which lie between typical signatures for upland and wetland sites and give evidence for the input of upland soil material through erosion.


Subject(s)
Mass Spectrometry/methods , Oxygen Isotopes/analysis , Oxygen/analysis , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis , Soil/analysis , Specimen Handling/methods , Feasibility Studies , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...